-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
convert.py
85 lines (75 loc) · 3.35 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
import transformers
from transformers import AutoTokenizer
from transformers.utils import logging
from packaging import version
import os
import shutil
import time
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert LLM for C++ NPU inference and save"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="meta-llama/Llama-2-7b-chat-hf",
help="The huggingface repo id for the model to be downloaded"
", or the path to the huggingface checkpoint folder.",
)
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, program will raise error.",
)
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--quantization-group-size", type=int, default=0)
parser.add_argument('--low-bit', type=str, default="sym_int4",
help='Low bit optimizations that will be applied to the model.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
save_dir = args.save_directory
t0 = time.perf_counter()
model = AutoModelForCausalLM.from_pretrained(model_path,
optimize_model=True,
load_in_low_bit=args.low_bit,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
quantization_group_size=args.quantization_group_size,
torch_dtype=torch.float16,
attn_implementation="eager",
trust_remote_code=True,
save_directory=save_dir)
t1 = time.perf_counter()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.45.0"):
tokenizer_json = os.path.join(model_path, "tokenizer.json")
dst_path = os.path.join(save_dir, "tokenizer.json")
shutil.copy(tokenizer_json, dst_path)
else:
tokenizer.save_pretrained(save_dir)
print("-" * 80)
print(f"Convert model cost {t1 - t0}s.")
print(f"finish save model to {save_dir}")
print("success shut down")