|
| 1 | +# shape: torch.Size([]) |
| 2 | +# nnz: 2 |
| 3 | +# sparse_dim: 0 |
| 4 | +# indices shape: torch.Size([0, 2]) |
| 5 | +# values shape: torch.Size([2]) |
| 6 | +########## torch.int32 ########## |
| 7 | +# sparse tensor |
| 8 | +tensor(indices=tensor([], size=(0, 2)), |
| 9 | + values=tensor([0, 1]), |
| 10 | + size=(), nnz=2, dtype=torch.int32, layout=torch.sparse_coo) |
| 11 | +# _indices |
| 12 | +tensor([], size=(0, 2), dtype=torch.int64) |
| 13 | +# _values |
| 14 | +tensor([0, 1], dtype=torch.int32) |
| 15 | +########## torch.float32 ########## |
| 16 | +# sparse tensor |
| 17 | +tensor(indices=tensor([], size=(0, 2)), |
| 18 | + values=tensor([0., 1.]), |
| 19 | + size=(), nnz=2, layout=torch.sparse_coo) |
| 20 | +# after requires_grad_ |
| 21 | +tensor(indices=tensor([], size=(0, 2)), |
| 22 | + values=tensor([0., 1.]), |
| 23 | + size=(), nnz=2, layout=torch.sparse_coo, requires_grad=True) |
| 24 | +# after addition |
| 25 | +tensor(indices=tensor([], size=(0, 2)), |
| 26 | + values=tensor([0., 2.]), |
| 27 | + size=(), nnz=2, layout=torch.sparse_coo, grad_fn=<AddBackward0>) |
| 28 | +# _indices |
| 29 | +tensor([], size=(0, 2), dtype=torch.int64) |
| 30 | +# _values |
| 31 | +tensor([0., 1.]) |
| 32 | + |
| 33 | +# shape: torch.Size([0]) |
| 34 | +# nnz: 10 |
| 35 | +# sparse_dim: 0 |
| 36 | +# indices shape: torch.Size([0, 10]) |
| 37 | +# values shape: torch.Size([10, 0]) |
| 38 | +########## torch.int32 ########## |
| 39 | +# sparse tensor |
| 40 | +tensor(indices=tensor([], size=(0, 10)), |
| 41 | + values=tensor([], size=(10, 0)), |
| 42 | + size=(0,), nnz=10, dtype=torch.int32, layout=torch.sparse_coo) |
| 43 | +# _indices |
| 44 | +tensor([], size=(0, 10), dtype=torch.int64) |
| 45 | +# _values |
| 46 | +tensor([], size=(10, 0), dtype=torch.int32) |
| 47 | +########## torch.float64 ########## |
| 48 | +# sparse tensor |
| 49 | +tensor(indices=tensor([], size=(0, 10)), |
| 50 | + values=tensor([], size=(10, 0)), |
| 51 | + size=(0,), nnz=10, dtype=torch.float64, layout=torch.sparse_coo) |
| 52 | +# after requires_grad_ |
| 53 | +tensor(indices=tensor([], size=(0, 10)), |
| 54 | + values=tensor([], size=(10, 0)), |
| 55 | + size=(0,), nnz=10, dtype=torch.float64, layout=torch.sparse_coo, |
| 56 | + requires_grad=True) |
| 57 | +# after addition |
| 58 | +tensor(indices=tensor([], size=(0, 10)), |
| 59 | + values=tensor([], size=(10, 0)), |
| 60 | + size=(0,), nnz=10, dtype=torch.float64, layout=torch.sparse_coo, |
| 61 | + grad_fn=<AddBackward0>) |
| 62 | +# _indices |
| 63 | +tensor([], size=(0, 10), dtype=torch.int64) |
| 64 | +# _values |
| 65 | +tensor([], size=(10, 0), dtype=torch.float64) |
| 66 | + |
| 67 | +# shape: torch.Size([2]) |
| 68 | +# nnz: 3 |
| 69 | +# sparse_dim: 0 |
| 70 | +# indices shape: torch.Size([0, 3]) |
| 71 | +# values shape: torch.Size([3, 2]) |
| 72 | +########## torch.int32 ########## |
| 73 | +# sparse tensor |
| 74 | +tensor(indices=tensor([], size=(0, 3)), |
| 75 | + values=tensor([[0, 0], |
| 76 | + [0, 1], |
| 77 | + [1, 1]]), |
| 78 | + size=(2,), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| 79 | +# _indices |
| 80 | +tensor([], size=(0, 3), dtype=torch.int64) |
| 81 | +# _values |
| 82 | +tensor([[0, 0], |
| 83 | + [0, 1], |
| 84 | + [1, 1]], dtype=torch.int32) |
| 85 | +########## torch.float32 ########## |
| 86 | +# sparse tensor |
| 87 | +tensor(indices=tensor([], size=(0, 3)), |
| 88 | + values=tensor([[0.0000, 0.3333], |
| 89 | + [0.6667, 1.0000], |
| 90 | + [1.3333, 1.6667]]), |
| 91 | + size=(2,), nnz=3, layout=torch.sparse_coo) |
| 92 | +# after requires_grad_ |
| 93 | +tensor(indices=tensor([], size=(0, 3)), |
| 94 | + values=tensor([[0.0000, 0.3333], |
| 95 | + [0.6667, 1.0000], |
| 96 | + [1.3333, 1.6667]]), |
| 97 | + size=(2,), nnz=3, layout=torch.sparse_coo, requires_grad=True) |
| 98 | +# after addition |
| 99 | +tensor(indices=tensor([], size=(0, 3)), |
| 100 | + values=tensor([[0.0000, 0.6667], |
| 101 | + [1.3333, 2.0000], |
| 102 | + [2.6667, 3.3333]]), |
| 103 | + size=(2,), nnz=3, layout=torch.sparse_coo, grad_fn=<AddBackward0>) |
| 104 | +# _indices |
| 105 | +tensor([], size=(0, 3), dtype=torch.int64) |
| 106 | +# _values |
| 107 | +tensor([[0.0000, 0.3333], |
| 108 | + [0.6667, 1.0000], |
| 109 | + [1.3333, 1.6667]]) |
| 110 | + |
| 111 | +# shape: torch.Size([100, 3]) |
| 112 | +# nnz: 3 |
| 113 | +# sparse_dim: 1 |
| 114 | +# indices shape: torch.Size([1, 3]) |
| 115 | +# values shape: torch.Size([3, 3]) |
| 116 | +########## torch.int32 ########## |
| 117 | +# sparse tensor |
| 118 | +tensor(indices=tensor([[0, 1, 2]]), |
| 119 | + values=tensor([[0, 0, 0], |
| 120 | + [0, 0, 1], |
| 121 | + [1, 1, 1]]), |
| 122 | + size=(100, 3), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| 123 | +# _indices |
| 124 | +tensor([[0, 1, 2]]) |
| 125 | +# _values |
| 126 | +tensor([[0, 0, 0], |
| 127 | + [0, 0, 1], |
| 128 | + [1, 1, 1]], dtype=torch.int32) |
| 129 | +########## torch.float64 ########## |
| 130 | +# sparse tensor |
| 131 | +tensor(indices=tensor([[0, 1, 2]]), |
| 132 | + values=tensor([[0.0000, 0.2222, 0.4444], |
| 133 | + [0.6667, 0.8889, 1.1111], |
| 134 | + [1.3333, 1.5556, 1.7778]]), |
| 135 | + size=(100, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo) |
| 136 | +# after requires_grad_ |
| 137 | +tensor(indices=tensor([[0, 1, 2]]), |
| 138 | + values=tensor([[0.0000, 0.2222, 0.4444], |
| 139 | + [0.6667, 0.8889, 1.1111], |
| 140 | + [1.3333, 1.5556, 1.7778]]), |
| 141 | + size=(100, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo, |
| 142 | + requires_grad=True) |
| 143 | +# after addition |
| 144 | +tensor(indices=tensor([[0, 1, 2]]), |
| 145 | + values=tensor([[0.0000, 0.4444, 0.8889], |
| 146 | + [1.3333, 1.7778, 2.2222], |
| 147 | + [2.6667, 3.1111, 3.5556]]), |
| 148 | + size=(100, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo, |
| 149 | + grad_fn=<AddBackward0>) |
| 150 | +# _indices |
| 151 | +tensor([[0, 1, 2]]) |
| 152 | +# _values |
| 153 | +tensor([[0.0000, 0.2222, 0.4444], |
| 154 | + [0.6667, 0.8889, 1.1111], |
| 155 | + [1.3333, 1.5556, 1.7778]], dtype=torch.float64) |
| 156 | + |
| 157 | +# shape: torch.Size([100, 20, 3]) |
| 158 | +# nnz: 0 |
| 159 | +# sparse_dim: 2 |
| 160 | +# indices shape: torch.Size([2, 0]) |
| 161 | +# values shape: torch.Size([0, 3]) |
| 162 | +########## torch.int32 ########## |
| 163 | +# sparse tensor |
| 164 | +tensor(indices=tensor([], size=(2, 0)), |
| 165 | + values=tensor([], size=(0, 3)), |
| 166 | + size=(100, 20, 3), nnz=0, dtype=torch.int32, layout=torch.sparse_coo) |
| 167 | +# _indices |
| 168 | +tensor([], size=(2, 0), dtype=torch.int64) |
| 169 | +# _values |
| 170 | +tensor([], size=(0, 3), dtype=torch.int32) |
| 171 | +########## torch.float32 ########## |
| 172 | +# sparse tensor |
| 173 | +tensor(indices=tensor([], size=(2, 0)), |
| 174 | + values=tensor([], size=(0, 3)), |
| 175 | + size=(100, 20, 3), nnz=0, layout=torch.sparse_coo) |
| 176 | +# after requires_grad_ |
| 177 | +tensor(indices=tensor([], size=(2, 0)), |
| 178 | + values=tensor([], size=(0, 3)), |
| 179 | + size=(100, 20, 3), nnz=0, layout=torch.sparse_coo, requires_grad=True) |
| 180 | +# after addition |
| 181 | +tensor(indices=tensor([], size=(2, 0)), |
| 182 | + values=tensor([], size=(0, 3)), |
| 183 | + size=(100, 20, 3), nnz=0, layout=torch.sparse_coo, grad_fn=<AddBackward0>) |
| 184 | +# _indices |
| 185 | +tensor([], size=(2, 0), dtype=torch.int64) |
| 186 | +# _values |
| 187 | +tensor([], size=(0, 3)) |
| 188 | + |
| 189 | +# shape: torch.Size([10, 0, 3]) |
| 190 | +# nnz: 3 |
| 191 | +# sparse_dim: 0 |
| 192 | +# indices shape: torch.Size([0, 3]) |
| 193 | +# values shape: torch.Size([3, 10, 0, 3]) |
| 194 | +########## torch.int32 ########## |
| 195 | +# sparse tensor |
| 196 | +tensor(indices=tensor([], size=(0, 3)), |
| 197 | + values=tensor([], size=(3, 10, 0, 3)), |
| 198 | + size=(10, 0, 3), nnz=3, dtype=torch.int32, layout=torch.sparse_coo) |
| 199 | +# _indices |
| 200 | +tensor([], size=(0, 3), dtype=torch.int64) |
| 201 | +# _values |
| 202 | +tensor([], size=(3, 10, 0, 3), dtype=torch.int32) |
| 203 | +########## torch.float64 ########## |
| 204 | +# sparse tensor |
| 205 | +tensor(indices=tensor([], size=(0, 3)), |
| 206 | + values=tensor([], size=(3, 10, 0, 3)), |
| 207 | + size=(10, 0, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo) |
| 208 | +# after requires_grad_ |
| 209 | +tensor(indices=tensor([], size=(0, 3)), |
| 210 | + values=tensor([], size=(3, 10, 0, 3)), |
| 211 | + size=(10, 0, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo, |
| 212 | + requires_grad=True) |
| 213 | +# after addition |
| 214 | +tensor(indices=tensor([], size=(0, 3)), |
| 215 | + values=tensor([], size=(3, 10, 0, 3)), |
| 216 | + size=(10, 0, 3), nnz=3, dtype=torch.float64, layout=torch.sparse_coo, |
| 217 | + grad_fn=<AddBackward0>) |
| 218 | +# _indices |
| 219 | +tensor([], size=(0, 3), dtype=torch.int64) |
| 220 | +# _values |
| 221 | +tensor([], size=(3, 10, 0, 3), dtype=torch.float64) |
| 222 | + |
| 223 | +# shape: torch.Size([10, 0, 3]) |
| 224 | +# nnz: 0 |
| 225 | +# sparse_dim: 0 |
| 226 | +# indices shape: torch.Size([0, 0]) |
| 227 | +# values shape: torch.Size([0, 10, 0, 3]) |
| 228 | +########## torch.int32 ########## |
| 229 | +# sparse tensor |
| 230 | +tensor(indices=tensor([], size=(0, 0)), |
| 231 | + values=tensor([], size=(0, 10, 0, 3)), |
| 232 | + size=(10, 0, 3), nnz=0, dtype=torch.int32, layout=torch.sparse_coo) |
| 233 | +# _indices |
| 234 | +tensor([], size=(0, 0), dtype=torch.int64) |
| 235 | +# _values |
| 236 | +tensor([], size=(0, 10, 0, 3), dtype=torch.int32) |
| 237 | +########## torch.float32 ########## |
| 238 | +# sparse tensor |
| 239 | +tensor(indices=tensor([], size=(0, 0)), |
| 240 | + values=tensor([], size=(0, 10, 0, 3)), |
| 241 | + size=(10, 0, 3), nnz=0, layout=torch.sparse_coo) |
| 242 | +# after requires_grad_ |
| 243 | +tensor(indices=tensor([], size=(0, 0)), |
| 244 | + values=tensor([], size=(0, 10, 0, 3)), |
| 245 | + size=(10, 0, 3), nnz=0, layout=torch.sparse_coo, requires_grad=True) |
| 246 | +# after addition |
| 247 | +tensor(indices=tensor([], size=(0, 0)), |
| 248 | + values=tensor([], size=(0, 10, 0, 3)), |
| 249 | + size=(10, 0, 3), nnz=0, layout=torch.sparse_coo, grad_fn=<AddBackward0>) |
| 250 | +# _indices |
| 251 | +tensor([], size=(0, 0), dtype=torch.int64) |
| 252 | +# _values |
| 253 | +tensor([], size=(0, 10, 0, 3)) |
0 commit comments