You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Add calculator function for Identifying Information (Amount of Information / Entropy) characteristic for given intervals array using formula: $$\displaystyle H=\sum_{j=1}^{m}{\frac {n_j} {n} * \log_2 \Delta_{a j}}$$
Where $n_j$ is a number of intervals in the given congeneric sequence, $n$ is a number of intervals in the whole sequence, $m$ is a number of different elements in the sequence and $\Delta_{a j}$ arithmetic mean of intervals of $j$-th element of the alphabet.
Examples
X = [2, 4, 2, 2, 4]
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0,77779373752225
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1.25069821459
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.3709777
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.2532824857
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 1.335618955
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 1.571
X = ['A','C','T','T','G','A','T','A','C','G']
x_intervals = intervals(X, 'Start', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1.7906654768
X = ['A','C','T','T','G','A','T','A','C','G']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.6895995955
X = ['A','C','T','T','G','A','T','A','C','G']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.6965784285
X = ['A','C','T','T','G','A','T','A','C','G']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 1.6373048326
X = ['A','C','T','T','G','A','T','A','C','G']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 1.9709505945
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'Start', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1.210777084415
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.5661778097771987
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.35849625
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 1.5294637608763
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 1.76096404744368
X = ['C','G']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0.5
X = ['C','G']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0.5
X = ['C','G']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 0.5849625007
X = ['C','G']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 1
X = ['C','C','C','C']
x_intervals = intervals(X, 'Start', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 0
X =['C','C','C','C']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 0
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 0
X = ['A','C','G','T']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.1462406252
X = ['A','C','G','T']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.1462406252
X = ['A','C','G','T']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 1.3219280949
X = ['A','C','G','T']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 2
X = ['A','A','A','A','C','G','T']
x_intervals = intervals(X, 'Start', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 0
X = ['A','A','A','A','C','G','T']
x_intervals = intervals(X, 'Start', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 1.102035074
X = ['A','A','A','A','C','G','T']
x_intervals = intervals(X, 'End', 'Normal')
result = identifying_information(x_intervals)
print(result)
> 0.830626027
X = ['A','A','A','A','C','G','T']
x_intervals = intervals(X, 'End', 'Redundant')
result = identifying_information(x_intervals)
print(result)
> 1.3991235932
X = ['A','A','A','A','C','G','T']
x_intervals = intervals(X, 'End', 'Cycle')
result = identifying_information(x_intervals)
print(result)
> 1.6644977792
No intervals
X = ['C','G']
x_intervals = intervals(X, 'End', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1
X = ['A','C','G','T']
x_intervals = intervals(X, 'End', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1
X = [2, 1]
x_intervals = intervals(X, 'End', 'Lossy')
result = identifying_information(x_intervals)
print(result)
> 1
The text was updated successfully, but these errors were encountered:
ChainsManipulator
changed the title
Add Entropy characteristic calculator
Add Entropy (Amount of Information) characteristic calculator
Oct 14, 2024
ChainsManipulator
changed the title
Add Entropy (Amount of Information) characteristic calculator
Add Entropy (Amount of Information / Amount of identifying information) characteristic calculator
Oct 14, 2024
ChainsManipulator
changed the title
Add Entropy (Amount of Information / Amount of identifying information) characteristic calculator
Add Amount of identifying information (Amount of Information / Entropy) characteristic calculator
Dec 8, 2024
Add calculator function for Identifying Information (Amount of Information / Entropy) characteristic for given intervals array using formula:
$$\displaystyle H=\sum_{j=1}^{m}{\frac {n_j} {n} * \log_2 \Delta_{a j}}$$ $n_j$ is a number of intervals in the given congeneric sequence, $n$ is a number of intervals in the whole sequence, $m$ is a number of different elements in the sequence and $\Delta_{a j}$ arithmetic mean of intervals of $j$ -th element of the alphabet.
Where
Examples
No intervals
The text was updated successfully, but these errors were encountered: