We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
采用LaTex语法写数学公式,github issue 暂不支持该语法
LaTex
对数函数是指数函数的反函数,指数函数 Y = a X 对应的对数函数形式为 X = log a Y 。
**根据 a X = a log a Y ,可得 a log a Y = Y **。【①】
这个结论很重要,下面的证明过程需要用到。
下面的证明默认条件成立的前提 a > 0 ,且 a ≠ 1
[证明]
a l o g a M N = M N 【根据①式得】
a log a M N = a log a M × a log a N 【根据①式替换上式等号右边】
a log a M N = a log a M + log a N 【根据同底指数幂想加 $a^{m+n} = a^m × a^n $ 替换上式等号右边】
证得 log a M N = log a M + log a N 【②】
证明过程同上,依据①式和 a m − n = a m a n 【③】
a log a M n = M n
a log a M n = ( a log a M ) n 【变换上式等号右边】
a log a M n = a ( log a M ) × n 【根据 ( a m ) n = a m × n 】
a log a M n = a n log a M
证得 log a M n = n log a M 【④】
( a n ) log a n M = M
a n × ( log a n M ) = a log a M
n × log a n M = log a M 【上式的指数】
证得 log a n = 1 n log a M 【⑤】
设 a = c m , b = c n
log b a = log c n c m
根据 ④ 和 ⑤,可得
log b a = m n
∵ m = log c a , n = log c b
∴ log b a = log c a log c b 【⑥】
换底公式还有很多变换形式,掌握一种就行
根据 ⑥,$\log_ab = \dfrac{\log_cb}{\log_ca}$
∴ 1 log a b = log c a log c b
再根据 ⑥, log c a log c b = log b a
∴ 1 log a b = log b a
The text was updated successfully, but these errors were encountered:
No branches or pull requests
什么是对数函数
对数函数是指数函数的反函数,指数函数 对应的对数函数形式为 。
**根据 ,可得 **。【①】
这个结论很重要,下面的证明过程需要用到。
[证明]
证得 【②】
证明过程同上,依据①式和 【③】
[证明]
证得 【④】
[证明]
证得 【⑤】
换底公式
[证明]
设
根据 ④ 和 ⑤,可得
倒数公式
[证明]
根据 ⑥,$\log_ab = \dfrac{\log_cb}{\log_ca}$
再根据 ⑥,
The text was updated successfully, but these errors were encountered: