forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexing.cpp
297 lines (268 loc) · 11.1 KB
/
Indexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// Indexing tensors by by tensors
//
// This corresponds to "advanced indexing" in NumPy. The two operations are:
//
// index(Tensor self, indices) -> Tensor
// index_put_(Tensor self, indices, value)
//
// The index is a TensorList containg kLong or kByte tensors or nulls. Byte
// tensors (boolean masks) are expanded to long tensors via nonzero(). Null
// tensors signify that the dimension is not indexed.
//
// All indexes are broadcast together and iterated as *one*. From NumPy:
//
// result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
// ..., ind_N[i_1, ..., i_M]]
//
// Note 1: ByteTensors expand to index as many dimensions as there are in the
// mask.
//
// Note 2: The behavior is more complicated when the index tensors are not all
// adjacent (e.g. x[[0, 1], :, [2, 3]]). In this case, self and the index
// tensors are transposed to the front: x.transpose(1, 2)[[0, 1], [2, 3]]
#include "ATen/ATen.h"
#include "ATen/NativeFunctions.h"
#include "ATen/ExpandUtils.h"
#include <algorithm>
#include <functional>
#include <numeric>
#include <vector>
namespace at { namespace native {
[[noreturn]]
static void invalid_mask(const Tensor & self, int64_t idx, const Tensor & mask, int64_t maskIdx) {
std::stringstream ss;
ss << "The shape of the mask " << mask.sizes() << " at index " << maskIdx;
ss << " does not match the shape of the indexed tensor " << self.sizes();
ss << " at index " << idx;
AT_ERROR(ss.str());
}
static void checkIndexTensorTypes(TensorList indices) {
for (auto& tensor : indices) {
if (tensor.defined()) {
auto& type = tensor.type();
auto scalarType = type.scalarType();
AT_CHECK(scalarType == kLong || scalarType == kByte,
"tensors used as indices must be long or byte tensors");
}
}
}
static std::vector<Tensor> expandByteTensors(const Tensor & self, TensorList indices) {
// Expands byte tensors (masks) into the equivalent indexing by LongTensors
std::vector<Tensor> result;
for (auto & index : indices) {
if (index.type().scalarType() == kByte) {
// The sizes of the ByteTensor mask must match the sizes of the
// corresponding dimensions in self
for (int64_t j = 0; j < index.dim(); j++) {
int64_t srcIdx = result.size() + j;
if (index.size(j) != self.size(srcIdx)) {
invalid_mask(self, srcIdx, index, j);
}
}
// Replace with nonzeros
auto nonzero = index.nonzero();
auto special_empty = false;
for (int64_t j = 0; j < index.dim(); j++) {
if (special_empty) {
// We can't call select on an empty tensor so we just create an empty
// tensor.
result.emplace_back(at::empty({0}, nonzero.options()));
} else {
result.emplace_back(nonzero.select(1, j));
}
}
} else {
result.emplace_back(index);
}
}
return result;
}
static bool hasContiguousSubspace(TensorList tl) {
// true if all the non-null tensors are adjacent
auto isDefined = [](const Tensor & tensor){ return tensor.defined(); };
auto isNull = [](const Tensor & tensor){ return !tensor.defined(); };
auto start = std::find_if(tl.begin(), tl.end(), isDefined);
auto stop = std::find_if(tl.rbegin(), tl.rend(), isDefined);
auto it = std::find_if(start, stop.base(), isNull);
return it == stop.base();
}
// Transposes the tensor and indices together so that all the non-null indices
// index the first k dimensions of the tensor. Returns the transposed tensor
// and the reordered indices. For example:
// transposeToFront(tensor, {nullptr, a, nullptr, b})
// returns
// tensor.permute([1, 3, 0, 2]), {a, b, nullptr, nullptr}
static std::tuple<Tensor, std::vector<Tensor>>
transposeToFront(Tensor self, TensorList indices) {
std::vector<int64_t> dims;
std::vector<Tensor> transposedIndices;
dims.reserve(self.dim());
for (int64_t i = 0; i < self.dim(); i++) {
if (indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back(indices[i]);
}
}
for (int64_t i = 0; i < self.dim(); i++) {
if (!indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back();
}
}
return std::make_tuple(self.permute(dims), std::move(transposedIndices));
}
static std::vector<int64_t> computeLinearStride(const Tensor & tensor) {
// computes the stride as if tensor were contigous
auto sizes = tensor.sizes();
std::vector<int64_t> stride(tensor.dim());
stride[tensor.dim() - 1] = 1;
std::partial_sum(sizes.rbegin(), sizes.rend() - 1, stride.rbegin() + 1, std::multiplies<int64_t>());
return stride;
}
// Unsqueezes src `before` times at the front and `after` times at the end
static Tensor unsqueezeN(const Tensor & src, int64_t before, int64_t after) {
auto srcSizes = src.sizes();
auto nDim = src.dim();
std::vector<int64_t> sizes(nDim + before + after, 1);
for (int64_t i = 0; i < nDim; i++) {
sizes[i + before] = srcSizes[i];
}
return src.view(sizes);
}
static Tensor wrapIndexOnce(const Tensor & index, int64_t dim, int64_t dim_size) {
if (index.numel() != 0) {
auto max_idx = index.max().item<int64_t>();
auto min_idx = index.min().item<int64_t>();
AT_CHECK(max_idx < dim_size,
"index ", max_idx, " is out of bounds for dimension ", dim, " with size ", dim_size);
AT_CHECK(min_idx >= -dim_size,
"index ", min_idx, " is out of bounds for dimension ", dim, " with size ", dim_size);
}
return index.remainder(dim_size);
}
static Tensor computeLinearIndex(const Tensor & src, TensorList indices) {
auto strides = computeLinearStride(src);
Type& longType = src.type().toScalarType(kLong);
// Compute the linear index by multiplying the indexing tensors by the
// stride and summing them. All the indexing tensors have the same shape at
// this point. We also compute the number of dimensions before and after that
// are not being index.
Tensor linearIndex;
int64_t emptyBefore = 0, emptyAfter = 0, nElemBefore = 1, nElemAfter = 1;
for (int64_t i = 0; i < src.dim(); i++) {
if (indices[i].defined()) {
// Cast index to the longType matching src's backend
// This allows us to support ie indexing a cuda tensor with a cpu tensor
Tensor index = (wrapIndexOnce(indices[i], i, src.size(i)) * strides[i]).toType(longType);
if (linearIndex.defined()) {
linearIndex += index;
} else {
linearIndex = index;
}
} else if (linearIndex.defined()) {
emptyAfter++;
nElemAfter *= src.size(i);
} else {
emptyBefore++;
nElemBefore *= src.size(i);
}
}
// Compute the linear indices for the parts of the tensor not being indexed
Tensor beforeIndex;
if (emptyBefore > 0) {
auto index = at::arange(0, nElemBefore, longType) * strides[emptyBefore - 1];
index = index.view(src.sizes().slice(0, emptyBefore));
beforeIndex = unsqueezeN(index, 0, linearIndex.dim() + emptyAfter);
}
Tensor afterIndex;
if (emptyAfter > 0) {
auto index = at::arange(0, nElemAfter, longType);
index = index.view(src.sizes().slice(src.dim() - emptyAfter, emptyAfter));
afterIndex = unsqueezeN(index, linearIndex.dim() + emptyBefore, 0);
}
// Sum with broadcasting to compute the full index
linearIndex = unsqueezeN(linearIndex, emptyBefore, emptyAfter);
if (beforeIndex.defined()) {
linearIndex = linearIndex + beforeIndex;
}
if (afterIndex.defined()) {
linearIndex = linearIndex + afterIndex;
}
return linearIndex;
}
static std::tuple<Tensor, Tensor> makeLinearIndex(Tensor self, TensorList orig) {
checkIndexTensorTypes(orig);
// first expand ByteTensor (boolean masks) into 1 or more LongTensors
auto indices = expandByteTensors(self, orig);
// next broadcast all index tensors together
indices = expand_outplace(indices);
// add missing null Tensors so that it matches self.dim()
while (indices.size() < (size_t)self.dim()) {
indices.emplace_back();
}
// if the non-null indices are not all adjacent, transpose self and indices
// together so that they're adjacent at the front
if (!hasContiguousSubspace(indices)) {
std::tie(self, indices) = transposeToFront(self, indices);
}
auto linearIndex = computeLinearIndex(self, indices);
return std::make_tuple(self, linearIndex);
}
Tensor index(const Tensor & self, TensorList indices) {
AT_CHECK(indices.size() <= (size_t)self.dim(),
"too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
Tensor src, linearIndex;
std::tie(src, linearIndex) = makeLinearIndex(self, indices);
return src.take(linearIndex);
}
Tensor index_put(const Tensor & self, TensorList indices, const Tensor & value) {
AT_CHECK(indices.size() <= (size_t)self.dim(),
"too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
Tensor src, linearIndex, expandedValue;
std::tie(src, linearIndex) = makeLinearIndex(self, indices);
std::tie(expandedValue) = expand_inplace(linearIndex, value);
Tensor dst = src.clone();
return dst.put_(linearIndex, expandedValue);
}
Tensor & index_put_(Tensor & self, TensorList indices, const Tensor & value) {
AT_CHECK(indices.size() <= (size_t)self.dim(),
"too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
Tensor src, linearIndex, expandedValue;
std::tie(src, linearIndex) = makeLinearIndex(self, indices);
std::tie(expandedValue) = expand_inplace(linearIndex, value);
return src.put_(linearIndex, expandedValue);
}
Tensor & index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
dim = maybe_wrap_dim(dim, self.dim());
AT_CHECK(index.dim() < 2,
"index_copy_(): Index should have dimension 1 or 0 (got ", index.dim(), ")");
int64_t numIndices = index.numel();
AT_CHECK(source.dim() != 0 || numIndices == 1,
"index_copy_(): When source is scalar, index should have one element (got ", numIndices, ")");
AT_CHECK(index.type().scalarType() == ScalarType::Long,
"index_copy_(): Expected LongTensor for index");
// Check that source and destination slices have the same size
auto selfSlicedSizes = self.sizes().vec();
if (selfSlicedSizes.size() > 0) {
selfSlicedSizes.erase(selfSlicedSizes.begin() + dim);
}
auto sourceSlicedSizes = source.sizes().vec();
if (sourceSlicedSizes.size() > 0) {
sourceSlicedSizes.erase(sourceSlicedSizes.begin() + dim);
}
if (selfSlicedSizes.size() != sourceSlicedSizes.size() ||
!std::equal(selfSlicedSizes.begin(), selfSlicedSizes.end(),
sourceSlicedSizes.begin())) {
std::stringstream ss;
ss << "index_copy_(): Source/destination tensor must have same slice shapes. ";
ss << "Destination slice shape: " << selfSlicedSizes << " at dimension " << dim;
ss << " and source slice shape: " << sourceSlicedSizes << " at dimension 0.";
AT_ERROR(ss.str());
}
if (source.dim() > 0 && numIndices != source.size(dim)) {
AT_ERROR(
"index_copy_(): Number of indices (", numIndices, ") should be equal to source.size(dim) (", source.size(dim), ")");
}
return at::_th_index_copy_(self, dim, index, source);
}
}} // at::native