forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCReduceApplyUtils.cuh
152 lines (134 loc) · 5.32 KB
/
THCReduceApplyUtils.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ifndef THC_REDUCE_APPLY_UTILS_INC
#define THC_REDUCE_APPLY_UTILS_INC
#include <cuda.h>
#include <assert.h>
#include "THCGeneral.h"
#include "THCTensor.h"
#include "THCDeviceUtils.cuh"
#include "THCTensorInfo.cuh"
// Enum that indicates whether tensor arguments are read/write or
// read-only
enum TensorArgType { ReadWrite, ReadOnly };
template <typename IndexType>
__device__ __forceinline__ IndexType getLinearBlockId() {
return blockIdx.z * gridDim.y * gridDim.x +
blockIdx.y * gridDim.x +
blockIdx.x;
}
// Reduce N values concurrently, i.e. suppose N = 2, and there are 4 threads:
// (1, 2), (3, 4), (5, 6), (7, 8), then the return in threadVals for thread 0
// is (1 + 3 + 5 + 7, 2 + 4 + 6 + 8) = (16, 20)
//
// If smem is not used again, there is no need to __syncthreads before this
// call. However, if smem will be used, e.g., this function is called in a loop,
// then __syncthreads is needed either before or afterwards to prevent non-0
// threads overriding smem in the next loop before num-0 thread reads from it.
template <typename T, typename ReduceOp, int N>
__device__ void reduceNValuesInBlock(T *smem,
T threadVals[N],
const unsigned int numVals,
ReduceOp reduceOp,
T init) {
if (numVals == 0) {
#pragma unroll
for (int i = 0; i < N; ++i) {
threadVals[i] = init;
}
return;
}
// We store each of the N values contiguously, so if N = 2, all values for
// the first threadVal for each thread in the block are stored followed by
// all of the values for the second threadVal for each thread in the block
if (threadIdx.x < numVals) {
#pragma unroll
for (int i = 0; i < N; ++i) {
smem[i * numVals + threadIdx.x] = threadVals[i];
}
}
__syncthreads();
// Number of lanes in the final reduction --> this is used to determine
// where to put the outputs of each of the n things we are reducing. If
// nLP = 32, then we have the 32 outputs for the first threadVal,
// followed by the 32 outputs for the second threadVal, etc.
const unsigned int numLanesParticipating = min(numVals, warpSize);
if (numVals > warpSize && ((threadIdx.x / warpSize) == 0 )) {
#pragma unroll
for (int i = 0; i < N; ++i) {
threadVals[i] = threadIdx.x < numVals ? threadVals[i] : init;
}
for (int i = warpSize + threadIdx.x; i < numVals; i += warpSize) {
#pragma unroll
for (int j = 0; j < N; ++j) {
threadVals[j] = reduceOp(threadVals[j], smem[j * numVals + i]);
}
}
#pragma unroll
for (int i = 0; i < N; ++i) {
smem[i * numLanesParticipating + threadIdx.x] = threadVals[i];
}
}
__syncthreads();
if (threadIdx.x == 0) {
if (numLanesParticipating == 32) {
#pragma unroll
for (int i = 0; i < N; ++i) {
#pragma unroll
for (int j = 1; j < 32; ++j) {
threadVals[i] = reduceOp(threadVals[i], smem[i * 32 + j]);
}
}
} else {
#pragma unroll
for (int i = 0; i < N; ++i) {
for (int j = 1; j < numLanesParticipating; ++j) {
threadVals[i] = reduceOp(threadVals[i], smem[i * numVals + j]);
}
}
}
}
}
// Block-wide reduction in shared memory helper; only threadIdx.x == 0 will
// return the reduced value
//
// If smem is not used again, there is no need to __syncthreads before this
// call. However, if smem will be used, e.g., this function is called in a loop,
// then __syncthreads is needed either before or afterwards to prevent non-0
// threads overriding smem in the next loop before num-0 thread reads from it.
template <typename T, typename ReduceOp>
__device__ T reduceBlock(T* smem,
const unsigned int numVals,
T threadVal,
ReduceOp reduceOp,
T init) {
reduceNValuesInBlock<T, ReduceOp, 1>(smem, &threadVal, numVals, reduceOp, init);
return threadVal;
}
// Block-wide reduction where each thread locally reduces N
// values before letting a single warp take over - assumes
// threadVals is in registers, not shared memory
//
// If smem is not used again, there is no need to __syncthreads before this
// call. However, if smem will be used, e.g., this function is called in a loop,
// then __syncthreads is needed either before or afterwards to prevent non-0
// threads overriding smem in the next loop before num-0 thread reads from it.
template <typename T, typename ReduceOp, int N>
__device__ T reduceBlockWithNThreadLocalReductions(T *smem,
T threadVals[N],
const unsigned int numVals,
ReduceOp reduceOp,
T init) {
int offset = threadIdx.x * N;
T local = offset < numVals ? threadVals[0] : init;
#pragma unroll
for (int i = 1; i < N; ++i) {
++offset;
T next = offset < numVals ? threadVals[i] : init;
local = reduceOp(local, next);
}
return reduceBlock<T, ReduceOp>(smem, blockDim.x < numVals ? blockDim.x : numVals, local, reduceOp, init);
}
// Make sure the given tensor doesn't have too many dimensions
void THCCheckTensorDims(THCState* state, THCudaTensor* tensor, int arg);
// Produces a grid with at least one point per tile
THC_API bool THC_getGridFromTiles(ptrdiff_t gridTiles, dim3& grid);
#endif // THC_REDUCE_APPLY_UTILS_INC