forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug_embed_params.py
65 lines (54 loc) · 1.98 KB
/
debug_embed_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import itertools
import torch
import torch.jit
from torch.autograd import Variable
import torch.autograd.function as function
import onnx
import caffe2.python.onnx.backend as c2
from test_pytorch_common import flatten
torch.set_default_tensor_type('torch.FloatTensor')
try:
import torch
except ImportError:
print('Cannot import torch, hence caffe2-torch test will not run.')
sys.exit(0)
def run_embed_params(proto, model, input, state_dict=None, use_gpu=True):
"""
This is only a helper debug function so we can test embed_params=False
case as well on pytorch front
This should likely be removed from the release version of the code
"""
device = 'CPU'
if use_gpu:
device = 'CUDA'
model_def = onnx.ModelProto.FromString(proto)
onnx.checker.check_model(model_def)
prepared = c2.prepare(model_def, device=device)
if state_dict:
parameters = []
# Passed in state_dict may have a different order. Make
# sure our order is consistent with the model's order.
# TODO: Even better: keyword arguments!
for k in model.state_dict():
if k not in state_dict:
# Once PyTorch Module adds unnecessary paramter, the old pre-trained model does not have it.
# Just simply pass the new one.
# TODO: Please don't export unnecessary parameter.
parameters.append(model.state_dict()[k])
else:
parameters.append(state_dict[k])
else:
parameters = list(model.state_dict().values())
W = {}
for k, v in zip(model_def.graph.input, flatten((input, parameters))):
if isinstance(v, Variable):
W[k.name] = v.data.cpu().numpy()
else:
W[k.name] = v.cpu().numpy()
caffe2_out = prepared.run(inputs=W)
return caffe2_out