-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
118 lines (91 loc) · 3.39 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
import subprocess
import argparse
from PIL import Image
# parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("--method", type=str)
ap.add_argument("--lambd", type=float)
ap.add_argument("--denoise", type=int)
ap.add_argument("--sigma", type=int)
args = ap.parse_args()
add_noise = 1 if not args.denoise else 0
methods = ['111', '211', '221', '-111',
'-1-11', '-121', '2-11', '110', '-110']
pqrSet = [(1, 1, 1), (2, 1, 1), (2, 2, 1), (-1, 1, 1),
(-1, -1, 1), (-1, 2, 1), (2, -1, 1), (1, 1, 0), (-1, 1, 0)]
ids = ['0', '1', '2', '3', '4', '5', '6', '7', '8']
methodsids = [{'method' : m, 'id' : mid}
for m, mid in zip(methods, ids)]
files = ['input_0']
#resize input to maximum height=400pixels and maximum width=400pixels
m = 'input_0'
img = Image.open(f'{m}.png')
(dx, dy) = img.size
if dy > 400:
img = img.resize((int(dx*400/dy), 400))
(dx, dy) = img.size
if dx > 400:
img = img.resize((400, int(dy*400/dx)))
img.save(f'{m}.png')
outname = 'denoised'
diffname = 'diff'
if args.denoise:
#denoise / cartoon+texture
#p=[]
for m in methodsids:
if str(m['method']) == args.method:
i = int(m['id'])
files += [outname]
p = ['denoisingPDHG_ipol', 'input_0.png', outname + '.png', str(args.lambd), str(pqrSet[i][0]), str(pqrSet[i][1]), str(pqrSet[i][2])]
subprocess.run(p)
#compute difference denoised-original
sigma = 5
p = []
for m in methodsids:
if str(m['method']) == args.method:
i = int(m['id'])
#self.cfg['diff']['%i'%i] = diffname
files += [diffname]
p = ['imdiff_ipol', 'input_0.png', outname + '.png', diffname + '.png', str(sigma)]
subprocess.run(p)
if add_noise:
#add noise
files += ['noisy']
p = ['addnoise_ipol', 'input_0.png', 'noisy.png', str(args.sigma)]
subprocess.run(p)
#denoise
#p=[]
for m in methodsids:
#if str(self.cfg['param'][m['method']]) == 'True':
if str(m['method']) == args.method:
i = int(m['id'])
files += [outname]
p = ['denoisingPDHG_ipol', 'noisy.png', outname + '.png', str(args.lambd),
str(pqrSet[i][0]), str(pqrSet[i][1]), str(pqrSet[i][2])]
subprocess.run(p)
#compute difference denoised-original
p = []
for m in methodsids:
#if str(self.cfg['param'][m['method']]) == 'True':
if str(m['method']) == args.method:
i = int(m['id'])
files += [diffname]
with open(f'{diffname}_rmse.txt', 'w') as file:
p = subprocess.run(['imdiff_ipol', 'input_0.png', outname + '.png', diffname + '.png', str(args.sigma)], stdout=file)
for m in methodsids:
#if str(self.cfg['param'][m['method']]) == 'True':
if str(m['method']) == args.method:
i = int(m['id'])
# Resize for visualization (always zoom by at least 2x)
(sizeX, sizeY) = Image.open('input_0.png').size
zoomfactor = 1
if max(sizeX, sizeY) < 250:
zoomfactor = 2
#zoomfactor = max(1, int(math.ceil(400.0/max(sizeX, sizeY))))
if zoomfactor > 1:
(sizeX, sizeY) = (zoomfactor*sizeX, zoomfactor*sizeY)
for filename in files:
im = Image.open(filename + '.png')
im = im.resize((sizeX, sizeY))
im.save(filename + '_zoom.png')