-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathls.c
263 lines (227 loc) · 9.17 KB
/
ls.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*----------------------------------------------------------------------------
"Recovering the Subpixel PSF from Two Photographs at Different Distances"
Copyright 2013 mauricio delbracio ([email protected])
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------*/
/**
* @file ls.c
* @brief library code with numerical algorithms for solving least squares
* @author Mauricio Delbracio ([email protected])
* @date Nov 24, 2011
*/
/*
Double precision functions were added, there were some problems
due to the float precision, now, all *d functions convert the
input A and b matrix to double matrix and do all the computations with doubles
finally the result is truncated into a float to be compatible with the other
part of the program
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ls.h"
#include <cblas.h>
#include <float.h>
/** Buffer Size */
#define BUFFER_SIZE 113337
/** If the absolute value is less than EPS_ZERO consider it is zero */
#define EPS_ZERO 1e-6
/*Wrapper functions to use LAPACK*/
/*
*SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
$ WORK, LWORK, IWORK, INFO )
*
* -- LAPACK driver routine (version 3.2.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2010
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGELSD computes the minimum-norm solution to a real linear least
* squares problem:
* minimize 2-norm(| b - A*x |)
* using the singular value decomposition (SVD) of A. A is an M-by-N
* matrix which may be rank-deficient.
*
* Several right hand side vectors b and solution vectors x can be
* handled in a single call; they are stored as the columns of the
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
* matrix X.
*
* The problem is solved in three steps:
* (1) Reduce the coefficient matrix A to bidiagonal form with
* Householder transformations, reducing the original problem
* into a "bidiagonal least squares problem" (BLS)
* (2) Solve the BLS using a divide and conquer approach.
* (3) Apply back all the Householder tranformations to solve
* the original least squares problem.
*
* The effective rank of A is determined by treating as zero those
* singular values which are less than RCOND times the largest singular
* value.
*
* The divide and conquer algorithm makes very mild assumptions about
* floating point arithmetic. It will work on machines with a guard
* digit in add/subtract, or on those binary machines without guard
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of A. M >= 0.
*
* N (input) INTEGER
* The number of columns of A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices B and X. NRHS >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A has been destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the M-by-NRHS right hand side matrix B.
* On exit, B is overwritten by the N-by-NRHS solution
* matrix X. If m >= n and RANK = n, the residual
* sum-of-squares for the solution in the i-th column is given
* by the sum of squares of elements n+1:m in that column.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,max(M,N)).
*
* S (output) DOUBLE PRECISION array, dimension (min(M,N))
* The singular values of A in decreasing order.
* The condition number of A in the 2-norm = S(1)/S(min(m,n)).
*
* RCOND (input) DOUBLE PRECISION
* RCOND is used to determine the effective rank of A.
* Singular values S(i) <= RCOND*S(1) are treated as zero.
* If RCOND < 0, machine precision is used instead.
*
* RANK (output) INTEGER
* The effective rank of A, i.e., the number of singular values
* which are greater than RCOND*S(1).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK must be at least 1.
* The exact minimum amount of workspace needed depends on M,
* N and NRHS. As long as LWORK is at least
* 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
* if M is greater than or equal to N or
* 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
* if M is less than N, the code will execute correctly.
* SMLSIZ is returned by ILAENV and is equal to the maximum
* size of the subproblems at the bottom of the computation
* tree (usually about 25), and
* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
* For good performance, LWORK should generally be larger.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))
* LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
* where MINMN = MIN( M,N ).
* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: the algorithm for computing the SVD failed to converge;
* if INFO = i, i off-diagonal elements of an intermediate
* bidiagonal form did not converge to zero.
*
* Further Details
* ===============
*
* Based on contributions by
* Ming Gu and Ren-Cang Li, Computer Science Division, University of
* California at Berkeley, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*/
static long dgelsd(int m, int n, int nrhs,
double *a, int lda, double *b, int ldb,
double *s, double rcond, int *rank,
double *work, int lwork, int *iwork)
{
extern void dgelsd_(const int *m, const int *n, const int *nrhs,
double *a, const int *lda, double *b,
const int *ldb, double *s, const double *rcond,
int *rank, double *work, int *lwork, int *iwork,
int *info);
int info;
dgelsd_(&m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, rank,
work, &lwork, iwork, &info);
return info;
}
/**
* @brief Solve Least Squares problem (double precision) x such that Ax = b.
* @param A - Array cointaining matrix 'A' elements (column major)
* @param b - Array of observed values 'b'
* @param x - Array with the solution 'x'
* @param n - number of columns of 'A'
* @param m - number of rows of 'A'
*/
void solve_lsd(float *Af, float *bf, float *x, int n, int m)
{
double *work;
double *s;
int i ;
double lwork;
int iwork[BUFFER_SIZE];
int rank;
double *A, *b;
A = (double *) malloc(m*n*sizeof(double));
b = (double *) malloc(m*sizeof(double));
for(i=0;i<m*n;i++)
A[i] = (double) Af[i];
for(i=0;i<m;i++)
b[i] = (double) bf[i];
/*Least Squares */
s = (double *) malloc(n * sizeof(double));
/*Do a query to know the optimum BufferSize */
dgelsd(m, n, 1, A, m, b, m, s, EPS_ZERO, &rank, &lwork, -1, iwork);
work = (double *) malloc(lwork * sizeof(double));
dgelsd(m, n, 1, A, m, b, m, s, EPS_ZERO, &rank, work, (int) lwork,
iwork);
for(i=0;i<n;i++) x[i] = (float) b[i];
free((void *) s);
free((void *) work);
free((void *) A);
free((void *) b);
}