forked from MurtyShikhar/Question-Answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_wrapper.py
809 lines (666 loc) · 30.8 KB
/
attention_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A powerful dynamic attention wrapper object."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.layers import base as layers_base
from tensorflow.python.layers import core as layers_core
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest
__all__ = [
"AttentionMechanism",
"AttentionWrapper",
"AttentionWrapperState",
"LuongAttention",
"BahdanauAttention",
"hardmax",
]
_zero_state_tensors = rnn_cell_impl._zero_state_tensors # pylint: disable=protected-access
class AttentionMechanism(object):
pass
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
"""Convert to tensor and possibly mask `memory`.
Args:
memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
check_inner_dims_defined: Python boolean. If `True`, the `memory`
argument's shape is checked to ensure all but the two outermost
dimensions are fully defined.
Returns:
A (possibly masked), checked, new `memory`.
Raises:
ValueError: If `check_inner_dims_defined` is `True` and not
`memory.shape[2:].is_fully_defined()`.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor batch sizes do not "
"match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError("Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (
memory_sequence_length.shape[0].value
or array_ops.shape(memory_sequence_length)[0])
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1])
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
class _BaseAttentionMechanism(AttentionMechanism):
"""A base AttentionMechanism class providing common functionality.
Common functionality includes:
1. Storing the query and memory layers.
2. Preprocessing and storing the memory.
"""
def __init__(self,
query_layer,
memory,
probability_fn,
memory_sequence_length=None,
memory_layer=None,
check_inner_dims_defined=True,
score_mask_value=float("-inf"),
name=None):
"""Construct base AttentionMechanism class.
Args:
query_layer: Callable. Instance of `tf.layers.Layer`. The layer's depth
must match the depth of `memory_layer`. If `query_layer` is not
provided, the shape of `query` must match that of `memory_layer`.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
probability_fn: A `callable`. Converts the score and previous alignments
to probabilities. Its signature should be:
`probabilities = probability_fn(score, previous_alignments)`.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths.
memory_layer: Instance of `tf.layers.Layer` (may be None). The layer's
depth must match the depth of `query_layer`.
If `memory_layer` is not provided, the shape of `memory` must match
that of `query_layer`.
check_inner_dims_defined: Python boolean. If `True`, the `memory`
argument's shape is checked to ensure all but the two outermost
dimensions are fully defined.
score_mask_value: (optional): The mask value for score before passing into
`probability_fn`. The default is -inf. Only used if
`memory_sequence_length` is not None.
name: Name to use when creating ops.
"""
#-- Some sanity checks
if (query_layer is not None
and not isinstance(query_layer, layers_base.Layer)):
raise TypeError(
"query_layer is not a Layer: %s" % type(query_layer).__name__)
if (memory_layer is not None
and not isinstance(memory_layer, layers_base.Layer)):
raise TypeError(
"memory_layer is not a Layer: %s" % type(memory_layer).__name__)
self._query_layer = query_layer
self._memory_layer = memory_layer
if not callable(probability_fn):
raise TypeError("probability_fn must be callable, saw type: %s" %
type(probability_fn).__name__)
# --all scores beyond a particular length are masked off to negative infinity, so softmax for those things is basically 0
self._probability_fn = lambda score, prev: ( # pylint:disable=g-long-lambda
probability_fn(
_maybe_mask_score(score, memory_sequence_length, score_mask_value),
prev))
with ops.name_scope(
name, "BaseAttentionMechanismInit", nest.flatten(memory)):
# -- perform basic sanity check on the memory vectors and mask them to zeros beyond their respective lengths
self._values = _prepare_memory(
memory, memory_sequence_length,
check_inner_dims_defined=check_inner_dims_defined)
# -- preprocess the keys (because it can be done) and this is more efficient than affine transforming the memory every time
self._keys = (
self.memory_layer(self._values) if self.memory_layer # pylint: disable=not-callable
else self._values)
self._batch_size = (
self._keys.shape[0].value or array_ops.shape(self._keys)[0])
# -- _alignments_size is the length of the max number of tokens
self._alignments_size = (self._keys.shape[1].value or
array_ops.shape(self._keys)[1])
@property
def memory_layer(self):
return self._memory_layer
@property
def query_layer(self):
return self._query_layer
@property
def values(self):
return self._values
@property
def keys(self):
return self._keys
@property
def batch_size(self):
return self._batch_size
@property
def alignments_size(self):
return self._alignments_size
def initial_alignments(self, batch_size, dtype):
"""Creates the initial alignment values for the `AttentionWrapper` class.
This is important for AttentionMechanisms that use the previous alignment
to calculate the alignment at the next time step (e.g. monotonic attention).
The default behavior is to return a tensor of all zeros.
Args:
batch_size: `int32` scalar, the batch_size.
dtype: The `dtype`.
Returns:
A `dtype` tensor shaped `[batch_size, alignments_size]`
(`alignments_size` is the values' `max_time`).
"""
max_time = self._alignments_size
return _zero_state_tensors(max_time, batch_size, dtype)
class LuongAttention(_BaseAttentionMechanism):
"""Implements Luong-style (multiplicative) attention scoring.
This attention has two forms. The first is standard Luong attention,
as described in:
Minh-Thang Luong, Hieu Pham, Christopher D. Manning.
"Effective Approaches to Attention-based Neural Machine Translation."
EMNLP 2015. https://arxiv.org/abs/1508.04025
The second is the scaled form inspired partly by the normalized form of
Bahdanau attention.
To enable the second form, construct the object with parameter
`scale=True`.
"""
def __init__(self,
num_units,
memory,
memory_sequence_length=None,
scale=False,
probability_fn=None,
score_mask_value=float("-inf"),
name="LuongAttention"):
"""Construct the AttentionMechanism mechanism.
Args:
num_units: The depth of the attention mechanism.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths.
scale: Python boolean. Whether to scale the energy term.
probability_fn: (optional) A `callable`. Converts the score to
probabilities. The default is @{tf.nn.softmax}. Other options include
@{tf.contrib.seq2seq.hardmax} and @{tf.contrib.sparsemax.sparsemax}.
Its signature should be: `probabilities = probability_fn(score)`.
score_mask_value: (optional): The mask value for score before passing into
`probability_fn`. The default is -inf. Only used if
`memory_sequence_length` is not None.
name: Name to use when creating ops.
"""
# For LuongAttention, we only transform the memory layer; thus
# num_units **must** match expected the query depth.
if probability_fn is None:
probability_fn = nn_ops.softmax
wrapped_probability_fn = lambda score, _: probability_fn(score)
super(LuongAttention, self).__init__(
query_layer=None,
memory_layer=layers_core.Dense(
num_units, name="memory_layer", use_bias=False),
memory=memory,
probability_fn=wrapped_probability_fn,
memory_sequence_length=memory_sequence_length,
score_mask_value=score_mask_value,
name=name)
self._num_units = num_units
self._scale = scale
self._name = name
def __call__(self, query, previous_alignments):
"""Score the query based on the keys and values.
Args:
query: Tensor of dtype matching `self.values` and shape
`[batch_size, query_depth]`.
previous_alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]`
(`alignments_size` is memory's `max_time`).
Returns:
alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]` (`alignments_size` is memory's
`max_time`).
Raises:
ValueError: If `key` and `query` depths do not match.
"""
depth = query.get_shape()[-1]
key_units = self.keys.get_shape()[-1]
if depth != key_units:
raise ValueError(
"Incompatible or unknown inner dimensions between query and keys. "
"Query (%s) has units: %s. Keys (%s) have units: %s. "
"Perhaps you need to set num_units to the the keys' dimension (%s)?"
% (query, depth, self.keys, key_units, key_units))
dtype = query.dtype
with variable_scope.variable_scope(None, "luong_attention", [query]):
# Reshape from [batch_size, depth] to [batch_size, 1, depth]
# for matmul.
query = array_ops.expand_dims(query, 1)
# Inner product along the query units dimension.
# matmul shapes: query is [batch_size, 1, depth] and
# keys is [batch_size, max_time, depth].
# the inner product is asked to **transpose keys' inner shape** to get a
# batched matmul on:
# [batch_size, 1, depth] . [batch_size, depth, max_time]
# resulting in an output shape of:
# [batch_time, 1, max_time].
# we then squeee out the center singleton dimension.
score = math_ops.matmul(query, self.keys, transpose_b=True)
score = array_ops.squeeze(score, [1])
if self._scale:
# Scalar used in weight scaling
g = variable_scope.get_variable(
"attention_g", dtype=dtype, initializer=1.)
score = g * score
alignments = self._probability_fn(score, previous_alignments)
return alignments
class BahdanauAttention(_BaseAttentionMechanism):
"""Implements Bhadanau-style (additive) attention.
This attention has two forms. The first is Bhandanau attention,
as described in:
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio.
"Neural Machine Translation by Jointly Learning to Align and Translate."
ICLR 2015. https://arxiv.org/abs/1409.0473
The second is the normalized form. This form is inspired by the
weight normalization article:
Tim Salimans, Diederik P. Kingma.
"Weight Normalization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks."
https://arxiv.org/abs/1602.07868
To enable the second form, construct the object with parameter
`normalize=True`.
"""
def __init__(self,
num_units,
memory,
memory_sequence_length=None,
normalize=False,
probability_fn=None,
score_mask_value=float("-inf"),
name="BahdanauAttention"):
"""Construct the Attention mechanism.
Args:
num_units: The depth of the query mechanism.
memory: The memory to query; usually the output of an RNN encoder. This
tensor should be shaped `[batch_size, max_time, ...]`.
memory_sequence_length (optional): Sequence lengths for the batch entries
in memory. If provided, the memory tensor rows are masked with zeros
for values past the respective sequence lengths.
normalize: Python boolean. Whether to normalize the energy term.
probability_fn: (optional) A `callable`. Converts the score to
probabilities. The default is @{tf.nn.softmax}. Other options include
@{tf.contrib.seq2seq.hardmax} and @{tf.contrib.sparsemax.sparsemax}.
Its signature should be: `probabilities = probability_fn(score)`.
score_mask_value: (optional): The mask value for score before passing into
`probability_fn`. The default is -inf. Only used if
`memory_sequence_length` is not None.
name: Name to use when creating ops.
"""
if probability_fn is None:
probability_fn = nn_ops.softmax
wrapped_probability_fn = lambda score, _: probability_fn(score)
# query layer : every query is multiplied by this
# memory layer : the entire memory unit is multipled by this where memory is a (-1, #memory_tokens, dim) tensor
super(BahdanauAttention, self).__init__(
query_layer=layers_core.Dense(
num_units, name="query_layer", use_bias=True),
memory_layer=layers_core.Dense(
num_units, name="memory_layer", use_bias=False),
memory=memory,
probability_fn=wrapped_probability_fn,
memory_sequence_length=memory_sequence_length,
score_mask_value=score_mask_value,
name=name)
self._num_units = num_units
self._normalize = normalize
self._name = name
self.mask_func = lambda score: _maybe_mask_score(score, memory_sequence_length, score_mask_value)
def __call__(self, query, previous_alignments):
"""Score the query based on the keys and values.
Args:
query: Tensor of dtype matching `self.values` and shape
`[batch_size, query_depth]`.
previous_alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]`
(`alignments_size` is memory's `max_time`).
Returns:
alignments: Tensor of dtype matching `self.values` and shape
`[batch_size, alignments_size]` (`alignments_size` is memory's
`max_time`).
"""
with variable_scope.variable_scope(None, "bahdanau_attention", [query]):
processed_query = self.query_layer(query) if self.query_layer else query
# Reshape from [batch_size, ...] to [batch_size, 1, ...] for broadcasting.
processed_query = array_ops.expand_dims(processed_query, 1)
keys = self._keys
dtype = query.dtype
v = variable_scope.get_variable(
"attention_v", [self._num_units], dtype=dtype)
if self._normalize:
# Scalar used in weight normalization
g = variable_scope.get_variable(
"attention_g", dtype=dtype,
initializer=math.sqrt((1. / self._num_units)))
# normed_v = g * v / ||v||
normed_v = g * v * math_ops.rsqrt(
math_ops.reduce_sum(math_ops.square(v)))
score = math_ops.reduce_sum(
normed_v * math_ops.tanh(keys + processed_query + b), [2])
else:
score = math_ops.reduce_sum(v * math_ops.tanh(keys + processed_query),
[2])
alignments = self._probability_fn(score, previous_alignments)
return alignments, self.mask_func(score)
class AttentionWrapperState(
collections.namedtuple("AttentionWrapperState",
("cell_state", "attention", "time", "alignments",
"alignment_history"))):
"""`namedtuple` storing the state of a `AttentionWrapper`.
Contains:
- `cell_state`: The state of the wrapped `RNNCell` at the previous time
step.
- `attention`: The attention emitted at the previous time step.
- `time`: int32 scalar containing the current time step.
- `alignments`: The alignment emitted at the previous time step.
- `alignment_history`: (if enabled) a `TensorArray` containing alignment
matrices from all time steps. Call `stack()` to convert to a `Tensor`.
"""
def clone(self, **kwargs):
"""Clone this object, overriding components provided by kwargs.
Example:
```python
initial_state = attention_wrapper.zero_state(dtype=..., batch_size=...)
initial_state = initial_state.clone(cell_state=encoder_state)
```
Args:
**kwargs: Any properties of the state object to replace in the returned
`AttentionWrapperState`.
Returns:
A new `AttentionWrapperState` whose properties are the same as
this one, except any overriden properties as provided in `kwargs`.
"""
return super(AttentionWrapperState, self)._replace(**kwargs)
def hardmax(logits, name=None):
"""Returns batched one-hot vectors.
The depth index containing the `1` is that of the maximum logit value.
Args:
logits: A batch tensor of logit values.
name: Name to use when creating ops.
Returns:
A batched one-hot tensor.
"""
with ops.name_scope(name, "Hardmax", [logits]):
logits = ops.convert_to_tensor(logits, name="logits")
if logits.get_shape()[-1].value is not None:
depth = logits.get_shape()[-1].value
else:
depth = array_ops.shape(logits)[-1]
return array_ops.one_hot(
math_ops.argmax(logits, -1), depth, dtype=logits.dtype)
class AttentionWrapper(rnn_cell_impl.RNNCell):
"""Wraps another `RNNCell` with attention.
"""
def __init__(self,
cell,
attention_mechanism,
attention_layer_size=None,
alignment_history=False,
cell_input_fn=None,
attention_input_fn = None,
output_attention=True,
initial_cell_state=None,
name=None):
"""Construct the `AttentionWrapper`.
Args:
cell: An instance of `RNNCell`.
attention_mechanism: An instance of `AttentionMechanism`.
attention_layer_size: Python integer, the depth of the attention (output)
layer. If None (default), use the context as attention at each time
step. Otherwise, feed the context and cell output into the attention
layer to generate attention at each time step.
alignment_history: Python boolean, whether to store alignment history
from all time steps in the final output state (currently stored as a
time major `TensorArray` on which you must call `stack()`).
cell_input_fn: (optional) A `callable`. The default is:
`lambda inputs, attention: array_ops.concat([inputs, attention], -1)`.
output_attention: Python bool. If `True` (default), the output at each
time step is the attention value. This is the behavior of Luong-style
attention mechanisms. If `False`, the output at each time step is
the output of `cell`. This is the beahvior of Bhadanau-style
attention mechanisms. In both cases, the `attention` tensor is
propagated to the next time step via the state and is used there.
This flag only controls whether the attention mechanism is propagated
up to the next cell in an RNN stack or to the top RNN output.
initial_cell_state: The initial state value to use for the cell when
the user calls `zero_state()`. Note that if this value is provided
now, and the user uses a `batch_size` argument of `zero_state` which
does not match the batch size of `initial_cell_state`, proper
behavior is not guaranteed.
name: Name to use when creating ops.
"""
super(AttentionWrapper, self).__init__(name=name)
if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access
raise TypeError(
"cell must be an RNNCell, saw type: %s" % type(cell).__name__)
if not isinstance(attention_mechanism, AttentionMechanism):
raise TypeError(
"attention_mechanism must be a AttentionMechanism, saw type: %s"
% type(attention_mechanism).__name__)
# -- what gets inputed to the core RNN cell we're wrapping around
if cell_input_fn is None:
cell_input_fn = (
lambda inputs, attention: array_ops.concat([inputs, attention], -1))
else:
if not callable(cell_input_fn):
raise TypeError(
"cell_input_fn must be callable, saw type: %s"
% type(cell_input_fn).__name__)
########### ADDED TO ALLOW DIFFERENT INPUTS TO ATTENTION MECHANISM #############
# what the attention unit gets as the query
if attention_input_fn is None:
attention_input_fn = (
lambda _, state: state)
else:
if not callable(attention_input_fn):
raise TypeError(
"attention_input_fn must be callable, saw type: %s"
% type(attention_input_fn).__name__)
############## DONE ####################################################
if attention_layer_size is not None:
self._attention_layer = layers_core.Dense(
attention_layer_size, name="attention_layer", use_bias=False)
self._attention_size = attention_layer_size
else:
self._attention_layer = None
self._attention_size = attention_mechanism.values.get_shape()[-1].value
self._cell = cell
self._attention_mechanism = attention_mechanism
self._cell_input_fn = cell_input_fn
self._attention_input_fn = attention_input_fn
self._output_attention = output_attention
self._alignment_history = alignment_history
with ops.name_scope(name, "AttentionWrapperInit"):
if initial_cell_state is None:
self._initial_cell_state = None
else:
final_state_tensor = nest.flatten(initial_cell_state)[-1]
state_batch_size = (
final_state_tensor.shape[0].value
or array_ops.shape(final_state_tensor)[0])
error_message = (
"When constructing AttentionWrapper %s: " % self._base_name +
"Non-matching batch sizes between the memory "
"(encoder output) and initial_cell_state. Are you using "
"the BeamSearchDecoder? You may need to tile your initial state "
"via the tf.contrib.seq2seq.tile_batch function with argument "
"multiple=beam_width.")
with ops.control_dependencies(
[check_ops.assert_equal(state_batch_size,
self._attention_mechanism.batch_size,
message=error_message)]):
self._initial_cell_state = nest.map_structure(
lambda s: array_ops.identity(s, name="check_initial_cell_state"),
initial_cell_state)
@property
def output_size(self):
if self._output_attention:
return self._attention_size
else:
return self._cell.output_size
@property
def state_size(self):
return AttentionWrapperState(
cell_state=self._cell.state_size,
time=tensor_shape.TensorShape([]),
attention=self._attention_size,
alignments=self._attention_mechanism.alignments_size,
alignment_history=()) # alignment_history is sometimes a TensorArray
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
if self._initial_cell_state is not None:
cell_state = self._initial_cell_state
else:
cell_state = self._cell.zero_state(batch_size, dtype)
error_message = (
"When calling zero_state of AttentionWrapper %s: " % self._base_name +
"Non-matching batch sizes between the memory "
"(encoder output) and the requested batch size. Are you using "
"the BeamSearchDecoder? If so, make sure your encoder output has "
"been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and "
"the batch_size= argument passed to zero_state is "
"batch_size * beam_width.")
with ops.control_dependencies(
[check_ops.assert_equal(batch_size,
self._attention_mechanism.batch_size,
message=error_message)]):
cell_state = nest.map_structure(
lambda s: array_ops.identity(s, name="checked_cell_state"),
cell_state)
if self._alignment_history:
alignment_history = tensor_array_ops.TensorArray(
dtype=dtype, size=0, dynamic_size=True)
else:
alignment_history = ()
return AttentionWrapperState(
cell_state=cell_state,
time=array_ops.zeros([], dtype=dtypes.int32),
attention=_zero_state_tensors(self._attention_size, batch_size,
dtype),
alignments=self._attention_mechanism.initial_alignments(
batch_size, dtype),
alignment_history=alignment_history)
def call(self, inputs, state):
"""Perform a step of attention-wrapped RNN.
- Step 1: Mix the `inputs` and previous step's `attention` output via
`cell_input_fn`.
- Step 2: Call the wrapped `cell` with this input and its previous state.
- Step 3: Score the cell's output with `attention_mechanism`.
- Step 4: Calculate the alignments by passing the score through the
`normalizer`.
- Step 5: Calculate the context vector as the inner product between the
alignments and the attention_mechanism's values (memory).
- Step 6: Calculate the attention output by concatenating the cell output
and context through the attention layer (a linear layer with
`attention_size` outputs).
Args:
inputs: (Possibly nested tuple of) Tensor, the input at this time step.
state: An instance of `AttentionWrapperState` containing
tensors from the previous time step.
Returns:
A tuple `(attention_or_cell_output, next_state)`, where:
- `attention_or_cell_output` depending on `output_attention`.
- `next_state` is an instance of `DynamicAttentionWrapperState`
containing the state calculated at this time step.
"""
# Step 1: Calculate the true inputs to the cell based on the
# previous attention value.
output_prev_step = state.cell_state.h # get hr_(i-1)
attention_input = self._attention_input_fn(inputs, output_prev_step) # get input to BahdanauAttention to get alpha_i
alignments, raw_scores = self._attention_mechanism(
attention_input, previous_alignments=state.alignments)
expanded_alignments = array_ops.expand_dims(alignments, 1)
attention_mechanism_values = self._attention_mechanism.values
context = math_ops.matmul(expanded_alignments, attention_mechanism_values)
context = array_ops.squeeze(context, [1])
cell_inputs = self._cell_input_fn(inputs, context) #concatenate input with alpha*memory and feed into root LSTM
cell_state = state.cell_state
cell_output, next_cell_state = self._cell(cell_inputs, cell_state)
if self._attention_layer is not None:
attention = self._attention_layer(
array_ops.concat([cell_output, context], 1))
else:
attention = context
if self._alignment_history:
alignment_history = state.alignment_history.write(
state.time, alignments)
else:
alignment_history = ()
next_state = AttentionWrapperState(
time=state.time + 1,
cell_state=next_cell_state,
attention=attention,
alignments=alignments,
alignment_history=alignment_history)
if self._output_attention:
return raw_scores, next_state
else:
return cell_output, next_state