forked from MurtyShikhar/Question-Answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
115 lines (86 loc) · 3.02 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
class squad_dataset(object):
def __init__(self, question_file, context_file, answer_file):
"""
Args:
filename: path to the files
"""
self.question_file = question_file
self.context_file = context_file
self.answer_file = answer_file
self.length = None
def iter_file(self, filename):
with open(filename) as f:
for line in f:
line = line.strip().split(" ")
line = map(lambda tok: int(tok), line)
yield line
def __iter__(self):
niter = 0
question_file_iter = self.iter_file(self.question_file)
answer_file_iter = self.iter_file(self.answer_file)
context_file_iter = self.iter_file(self.context_file)
for question, context, answer in zip(question_file_iter, context_file_iter, answer_file_iter):
yield (question, context, answer)
def __len__(self):
"""
Iterates once over the corpus to set and store length
"""
if self.length is None:
self.length = 0
for _ in self:
self.length += 1
return self.length
def _pad_sequences(sequences, pad_tok, max_length):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
Returns:
a list of list where each sublist has same length
"""
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok]*max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return np.array(sequence_padded), np.array(sequence_length)
def pad_sequences(sequences, pad_tok):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
Returns:
a list of list where each sublist has same length
"""
max_length = max([len(x) for x in sequences])
sequence_padded, sequence_length = _pad_sequences(sequences,
pad_tok, max_length)
return sequence_padded, sequence_length
def minibatches(data, minibatch_size):
"""
Args:
data: generator of (question, context, answer) tuples
minibatch_size: (int)
Returns:
list of tuples
"""
question_batch, context_batch, answer_batch = [], [], []
for (q, c, a) in data:
if len(question_batch) == minibatch_size:
yield question_batch, context_batch, answer_batch
question_batch, context_batch, answer_batch = [], [], []
question_batch.append(q)
context_batch.append(c)
answer_batch.append(a)
if len(question_batch) != 0:
yield question_batch, context_batch, answer_batch
def get_trimmed_glove_vectors(filename):
"""
Args:
filename: path to the npz file
Returns:
nmatrix of embeddings (np array)
"""
return np.load(filename)["glove"]