forked from MurtyShikhar/Question-Answering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
52 lines (35 loc) · 1.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import json
import tensorflow as tf
import numpy as np
from qa_model import Encoder, QASystem, Decoder, BaselineDecoder
from config import Config
from data_utils import *
from os.path import join as pjoin
def initialize_vocab(vocab_path):
if tf.gfile.Exists(vocab_path):
rev_vocab = []
with tf.gfile.GFile(vocab_path, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip('\n') for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocab_path)
def run_func():
config = Config()
train = squad_dataset(config.question_train, config.context_train, config.answer_train)
dev = squad_dataset(config.question_dev, config.context_dev, config.answer_dev)
embed_path = config.embed_path
vocab_path = config.vocab_path
vocab, rev_vocab = initialize_vocab(vocab_path)
embeddings = get_trimmed_glove_vectors(embed_path)
encoder = Encoder(config.hidden_state_size)
decoder = Decoder(config.hidden_state_size)
qa = QASystem(encoder, decoder, embeddings, config)
with tf.Session() as sess:
# ====== Load a pretrained model if it exists or create a new one if no pretrained available ======
qa.initialize_model(sess, config.train_dir)
qa.train(sess, [train, dev], config.train_dir)
if __name__ == "__main__":
run_func()