diff --git a/ChangeLog.md b/ChangeLog.md
index 801cb16..983056f 100644
--- a/ChangeLog.md
+++ b/ChangeLog.md
@@ -1,10 +1,10 @@
# Change Log
-## Next Version 2.3.0
+## Version 2.3.0 (July, 2023)
App
-- WIP: Add simple apps to the project.
+- Vehicle1D performance design app is added.
Files and folders organization
@@ -16,7 +16,7 @@ Files and folders organization
GitHub repository UX
- Sinced 2.2.0, Live Scripts were converted to Jupiter Notebooks
- so that they could be viewed directly in github web site in the browser.
+ so that they could be viewed directly in GitHub web site in the browser.
Now Markdown files are used instead of Jupyter Notebooks.
Markdown files are stored under the "Markdowns" folder
for the corresponding Live Scripts.
diff --git a/README.md b/README.md
index f1fecc7..8c08a2a 100644
--- a/README.md
+++ b/README.md
@@ -2,7 +2,7 @@
[![View Battery Electric Vehicle Model in Simscape on File Exchange](https://www.mathworks.com/matlabcentral/images/matlab-file-exchange.svg)](https://www.mathworks.com/matlabcentral/fileexchange/82250-battery-electric-vehicle-model-in-simscape)
-Version 2.2
+Version 2.3
## Introduction
@@ -41,6 +41,13 @@ Watch the [YouTube video][url_yt] introducing the model.
[url_yt]:https://www.youtube.com/watch?v=i07MNXZc42c
+## What's New in 2.3 (June, 2024)
+
+- The project has been updated to MATLAB R2024a.
+- Vehicle1D performance design app is added.
+- For veiwing Live Scripts in the GitHub web site in the browser,
+ they are converted to Markdown files and collected in the Markdown folder.
+
## What's New in 2.2 (September, 2023)
- The project has been updated to MATLAB R2023b.
diff --git a/Utility/AboutBEVProject.ipynb b/Utility/AboutBEVProject.ipynb
deleted file mode 100644
index 6b0587a..0000000
--- a/Utility/AboutBEVProject.ipynb
+++ /dev/null
@@ -1,445 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "# About BEV Project\n",
- "\n",
- "This Live Script reports about some details of the BEV project. For information about MATLAB Project, see [Projects](https://www.mathworks.com/help/matlab/projects.html) in the documentation. For information about the object of MATLAB Project, see [matlab.project.Project](https://www.mathworks.com/help/matlab/ref/matlab.project.project.html).\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "source": [
- "% Check if any MATLAB Project is currently open.\n",
- "if not(isempty(matlab.project.rootProject))\n",
- " prj = currentProject;\n",
- " disp(prj.Name)\n",
- " rootfolder = prj.RootFolder;\n",
- "else\n",
- " disp(\"No project is open.\")\n",
- " return\n",
- "end"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Simscape Battery Electric Vehicle Model"
- ]
- },
- "metadata": {},
- "execution_count": 1,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Project Paths"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "source": [
- "paths = [prj.ProjectPath.StoredLocation]';\n",
- "disp(paths)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- " \"\"\n",
- " \"BEV\"\n",
- " \"BEV/SimulationCases\"\n",
- " \"BEV/Test\"\n",
- " \"BEV/Utility\"\n",
- " \"BEV/Utility/Configuration\"\n",
- " \"BEV/Utility/Images\"\n",
- " \"BEV/Utility/LocalTasks\"\n",
- " \"Components\"\n",
- " \"Components/BEVController\"\n",
- " \"Components/BEVController/Harness\"\n",
- " \"Components/BEVController/SimulationCases\"\n",
- " \"Components/BEVController/Test\"\n",
- " \"Components/BEVController/Utility\"\n",
- " \"Components/BEVController/Utility/Configuration\"\n",
- " \"Components/BatteryHighVoltage\"\n",
- " \"Components/BatteryHighVoltage/Harness\"\n",
- " \"Components/BatteryHighVoltage/Model-TabledBased\"\n",
- " \"Components/BatteryHighVoltage/SimulationCases\"\n",
- " \"Components/BatteryHighVoltage/Test\"\n",
- " \"Components/BatteryHighVoltage/Utility\"\n",
- " \"Components/BatteryHighVoltage/Utility/Configuration\"\n",
- " \"Components/BatteryHighVoltage/Utility/Images\"\n",
- " \"Components/BatteryHighVoltage/Utility/LocalTasks\"\n",
- " \"Components/ControllerAndEnvironment\"\n",
- " \"Components/ControllerAndEnvironment/Harness\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle/Harness\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle/SimulationCases\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle/Test\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle/Utility\"\n",
- " \"Components/ControllerAndEnvironment/Harness/Components/Vehicle/Utility/Configuration\"\n",
- " \"Components/ControllerAndEnvironment/SimulationCases\"\n",
- " \"Components/ControllerAndEnvironment/Test\"\n",
- " \"Components/ControllerAndEnvironment/Utility\"\n",
- " \"Components/ControllerAndEnvironment/Utility/Configuration\"\n",
- " \"Components/MotorDriveUnit\"\n",
- " \"Components/MotorDriveUnit/Harness\"\n",
- " \"Components/MotorDriveUnit/Notes-Efficiency\"\n",
- " \"Components/MotorDriveUnit/SimulationCases\"\n",
- " \"Components/MotorDriveUnit/Test\"\n",
- " \"Components/MotorDriveUnit/Utility\"\n",
- " \"Components/MotorDriveUnit/Utility/Configuration\"\n",
- " \"Components/MotorDriveUnit/Utility/Images\"\n",
- " \"Components/Reducer\"\n",
- " \"Components/Reducer/Utility\"\n",
- " \"Components/Reducer/Utility/Images\"\n",
- " \"Components/Vehicle1D\"\n",
- " \"Components/Vehicle1D/Custom\"\n",
- " \"Components/Vehicle1D/Harness\"\n",
- " \"Components/Vehicle1D/SimulationCases\"\n",
- " \"Components/Vehicle1D/Test\"\n",
- " \"Components/Vehicle1D/Utility\"\n",
- " \"Components/Vehicle1D/Utility/Configuration\"\n",
- " \"Components/Vehicle1D/Utility/Images\"\n",
- " \"Components/VehicleSpeedReference\"\n",
- " \"Components/VehicleSpeedReference/Harness\"\n",
- " \"Components/VehicleSpeedReference/SimulationCases\"\n",
- " \"Components/VehicleSpeedReference/Test\"\n",
- " \"Components/VehicleSpeedReference/Utility\"\n",
- " \"Components/VehicleSpeedReference/Utility/Configuration\"\n",
- " \"DetailedModelApplications\"\n",
- " \"DetailedModelApplications/MotorDrivePmsmFem\"\n",
- " \"DetailedModelApplications/MotorPmsmFem\"\n",
- " \"Interface\"\n",
- " \"Test\"\n",
- " \"Test/CheckProject\"\n",
- " \"Utility\"\n",
- " \"Utility/Checks\"\n",
- " \"Utility/LocalTasks\"\n",
- " \"Utility/SignalDesigner\"\n",
- " \"Utility/TestTools\"\n",
- " \"simcache\""
- ]
- },
- "metadata": {},
- "execution_count": 2,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Startup Files"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "source": [
- "startups = extractAfter([prj.StartupFiles]', rootfolder);\n",
- "disp(startups)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- " \"\\Utility\\atProjectStartUp.m\"\n",
- " \"\\BEVProject_main_script.html\""
- ]
- },
- "metadata": {},
- "execution_count": 3,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Simulink cache folder"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "source": [
- "simcache = extractAfter(prj.SimulinkCacheFolder, rootfolder);\n",
- "disp(simcache)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "\\simcache"
- ]
- },
- "metadata": {},
- "execution_count": 4,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Files in Project\n",
- "\n",
- "The number of files in the project\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "source": [
- "numel(prj.Files)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ans = 405"
- ]
- },
- "metadata": {},
- "execution_count": 5,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "source": [
- "files = extractAfter([prj.Files.Path]', rootfolder);\n",
- "% disp(files)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "System Models\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "source": [
- "idx = contains(files, \"system_model\", IgnoreCase=true);\n",
- "sysmdls = files(idx);\n",
- "disp(sysmdls)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- " \"\\BEV\\BEV_system_model.mdl\"\n",
- " \"\\BEV\\Utility\\Images\\BEV_system_model_screenshot.png\""
- ]
- },
- "metadata": {},
- "execution_count": 7,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Referenced Subsystems\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "source": [
- "idx = contains(files, \"refsub\", IgnoreCase=true);\n",
- "refsubs = files(idx);\n",
- "numel(refsubs)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ans = 44"
- ]
- },
- "metadata": {},
- "execution_count": 8,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "source": [
- "disp(refsubs)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- " \"\\Components\\BEVController\\BEVController_refsub_Basic.mdl\"\n",
- " \"\\Components\\BEVController\\BEVController_refsub_Basic_params.m\"\n",
- " \"\\Components\\BEVController\\Utility\\Configuration\\BEVController_useRefsub.m\"\n",
- " \"\\Components\\BEVController\\Utility\\Configuration\\BEVController_useRefsub_Basic.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_Basic.mdl\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_Basic_params.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_System.mdl\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_SystemSimple.mdl\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_SystemSimple_params.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_SystemTable.mdl\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_SystemTable_params.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\BatteryHV_refsub_System_params.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\Utility\\Configuration\\BatteryHV_useRefsub.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\Utility\\Configuration\\BatteryHV_useRefsub_Basic.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\Utility\\Configuration\\BatteryHV_useRefsub_System.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\Utility\\Configuration\\BatteryHV_useRefsub_SystemSimple.m\"\n",
- " \"\\Components\\BatteryHighVoltage\\Utility\\Configuration\\BatteryHV_useRefsub_SystemTable.m\"\n",
- " \"\\Components\\ControllerAndEnvironment\\CtrlEnv_refsub_Basic.mdl\"\n",
- " \"\\Components\\ControllerAndEnvironment\\CtrlEnv_refsub_Basic_params.m\"\n",
- " \"\\Components\\ControllerAndEnvironment\\Harness\\Components\\Vehicle\\CtrlEnv_Vehicle_refsub.mdl\"\n",
- " \"\\Components\\ControllerAndEnvironment\\Harness\\Components\\Vehicle\\CtrlEnv_Vehicle_refsub_params.m\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_Basic.mdl\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_BasicThermal.mdl\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_BasicThermal_params.m\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_Basic_params.m\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_System.mdl\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_SystemTable.mdl\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_SystemTable_params.m\"\n",
- " \"\\Components\\MotorDriveUnit\\MotorDriveUnit_refsub_System_params.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Configuration\\MotorDriveUnit_useRefsub.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Configuration\\MotorDriveUnit_useRefsub_Basic.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Configuration\\MotorDriveUnit_useRefsub_BasicThermal.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Configuration\\MotorDriveUnit_useRefsub_System.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Configuration\\MotorDriveUnit_useRefsub_SystemTable.m\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Images\\MotorDriveUnit_refsub_Basic_efficiency.png\"\n",
- " \"\\Components\\MotorDriveUnit\\Utility\\Images\\MotorDriveUnit_refsub_System_efficiency.png\"\n",
- " \"\\Components\\Reducer\\Reducer_refsub_Basic.mdl\"\n",
- " \"\\Components\\Reducer\\Reducer_refsub_Basic_params.m\"\n",
- " \"\\Components\\Vehicle1D\\Custom\\Vehicle1D_refsub_Custom.mdl\"\n",
- " \"\\Components\\Vehicle1D\\Utility\\Images\\Vehicle1D_refsub_Basic_ResistingForcePower.png\"\n",
- " \"\\Components\\Vehicle1D\\Vehicle1D_refsub_Basic.mdl\"\n",
- " \"\\Components\\Vehicle1D\\Vehicle1D_refsub_Basic_params.m\"\n",
- " \"\\Components\\VehicleSpeedReference\\VehSpdRef_refsub_Basic.mdl\"\n",
- " \"\\DetailedModelApplications\\MotorPmsmFem\\PmsmFemRefSub.mdl\""
- ]
- },
- "metadata": {},
- "execution_count": 9,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Simscape custom components\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "source": [
- "idx = endsWith(files, \".ssc\");\n",
- "sscfiles = files(idx);\n",
- "numel(sscfiles)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ans = 1"
- ]
- },
- "metadata": {},
- "execution_count": 10,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "source": [
- "disp(sscfiles)"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- "\\Components\\Vehicle1D\\Custom\\Vehicle1D_Custom.ssc"
- ]
- },
- "metadata": {},
- "execution_count": 11,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "*Copyright 2022-2023 The MathWorks, Inc.*\n",
- "\n",
- ""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "MATLAB (matlabkernel)",
- "language": "matlab",
- "name": "matlab"
- },
- "language_info": {
- "file_extension": ".m",
- "mimetype": "text/matlab",
- "name": "matlab",
- "nbconvert_exporter": "matlab",
- "pygments_lexer": "matlab",
- "version": "23.2.0.2459199"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
\ No newline at end of file
diff --git a/Utility/SignalDesigner/SignalDesigner_example.ipynb b/Utility/SignalDesigner/SignalDesigner_example.ipynb
deleted file mode 100644
index 243208b..0000000
--- a/Utility/SignalDesigner/SignalDesigner_example.ipynb
+++ /dev/null
@@ -1,564 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "\n",
- "# Using Signal Designer and Signal Source Block Library\n",
- "\n",
- "[**Signal Designer**](SignalDesigner.m) lets you define a signal trace using simple parameterization scheme to define the shape of a signal. Signal Designer can create the following three types of signals.\n",
- "\n",
- "- **Continuous multi-step signal** is a signal trace consisting of smoothly connected flat segments.\n",
- "- **Continuous signal** is a smooth signal trace.\n",
- "- **Piece-wise constant signal** is a signal trace consisting of constant segments that are connected with discrete jumps.\n",
- "\n",
- "Accompanying [**Signal Source Block Library**](SignalSourceBlockLibrary) provides four blocks to generate signals in Simulink: **Continuous Multi-Step block**, **Continous block**, **Piece-Wise Constant block**, and **Trace Generator block**. These blocks internally use Signal Designer.\n",
- "\n",
- "\n",
- "
\n",
- "\n",
- "\n",
- "This Live Script describes each block and shows example uses of Signal Designer in MATLAB.\n",
- "\n",
- "\n",
- "## Table of Contents\n",
- "[Continuous Multi-Step](#H_B8D9F8D4)\n",
- "\n",
- "[Continuous](#H_6CEACC67)\n",
- "\n",
- "[Piece-Wise Constant](#H_53999B69)\n",
- "\n",
- "[Trace Generator](#H_7D36F555)\n",
- "\n",
- "\n",
- "\n",
- "## Continuous Multi-Step\n",
- "\n",
- "Continuous Multi-Step block has two parameters:\n",
- "\n",
- "
![\"image_1.png\"](\"\")
\n",
- "\n",
- "\n",
- "Data points parameter (N-by-3 matrix) and Interpolation step parameter correspond to XYData and DeltaX below, respectively.\n",
- "\n",
- "\n",
- "Create a Signal Designer object for a continuous multi-step signal trace.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "source": [
- "smoothSignal = SignalDesigner(\"ContinuousMultiStep\");"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Set an N-by-3 matrix for data points characterizing a continuous signal trace. In each row, a flat segment starts from first column and ends at second column in X (horizontal) axis. In Continuous Multi-Step block, X axis represents time. Third column defines a constant value in Y (vertical) axis. Second column can be NaN, in which case third column defines a value at point (X, Y).\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "source": [
- "smoothSignal.XYData = [\n",
- " 0 1 0 ; ... a flat segment from 0 to 1 in X, of value 0 in Y\n",
- " 3 nan 9 ; ... a point at 3 in X, of value 9 in Y\n",
- " 6 8 7 ]; % a flat segment from 6 to 8 in X, of value 7 in Y"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Set a resolution of interpolation.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "source": [
- "smoothSignal.DeltaX = 0.05;"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Call the update function to generate a signal trace data set in the Signal Designer object.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "source": [
- "update(smoothSignal)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "As an example, let's see the first 5 rows. Notice that the first and second rows are the start and end of a flat segment, and there is no data point in between although interpolation resolution 0.05 is smaller than the distance in X between first and second rows (which is 1). This is because Signal Designer removed redundant intermediate data points after interpolation. This data point optimization helps reduce the final data size, especially when there are more flat segments than non-flat segments in the trace.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "source": [
- "disp(smoothSignal.Data(1:5, :))"
- ],
- "outputs": [
- {
- "data": {
- "text/plain": [
- " X Y \n",
- " ____ ________\n",
- " 0 0\n",
- " 1 0\n",
- "1.05 0.016594\n",
- "2. 1 0.06525\n",
- "3. 15 0.14428"
- ]
- },
- "metadata": {},
- "execution_count": 5,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Use plotDataPoints function to see how data points were converted to a smooth signal trace.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "source": [
- "plotDataPoints(smoothSignal);"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 6,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "A Signal Designer object has properties which you can modify.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "source": [
- "smoothSignal.XName = \"Time\";\n",
- "smoothSignal.XUnit = \"s\";\n",
- "\n",
- "smoothSignal.YName = \"Speed\";\n",
- "smoothSignal.YUnit = \"km/hr\";\n",
- "\n",
- "smoothSignal.Title = \"Vehicle speed reference\";\n",
- "\n",
- "% Make sure to call update to reflect new property values.\n",
- "update(smoothSignal)\n",
- "\n",
- "% Figure object is returned.\n",
- "fig = plotDataPoints(smoothSignal);\n",
- "fig.Position(3:4) = [500 300]; % width height"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 7,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "## Continuous\n",
- "\n",
- "Continuous block has two parameters:\n",
- "\n",
- "![\"image_2.png\"](\"\")
\n",
- "\n",
- "\n",
- "Data points parameter (N-by-2 matrix) and Interpolation step parameter correspond to XYData and DeltaX below, respectively.\n",
- "\n",
- "\n",
- "Create a Signal Designer object for a continuous signal trace.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "source": [
- "smoothSignal = SignalDesigner(\"Continuous\");"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Set an N-by-2 matrix for data points characterizing a continuous signal trace. In each row, first element and second element are X and Y values, respectively, defining a point (X, Y). In Continuous block, X axis represents time. For smoothing, X is treated as an independent variable. Y is treated as a function of X.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "source": [
- "smoothSignal.XYData = [\n",
- " 0 0 ; ... (0, 0)\n",
- " 1 0 ; ... (1, 0)\n",
- " 2 5 ; ... (2, 5)\n",
- " 4 2 ; ... (4, 2)\n",
- " 5 2 ]; % (5, 2)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Set a resolution of interpolation.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "source": [
- "smoothSignal.DeltaX = 0.05;"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Call the update function to generate a signal trace data set in the Signal Designer object.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "source": [
- "update(smoothSignal)"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Visualize the result.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "source": [
- "plotDataPoints(smoothSignal);"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 12,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "As you can see, the Continuous signal type does not produce flat segments. However, you can do so by repeating the same Y value in at least three consecutive rows. This is possible because of the interpolation algorithm used which is modified Akima interpolation.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "source": [
- "smoothSignal.XYData = [\n",
- " 0 0 ;\n",
- " 0.5 0 ; % Added\n",
- " 1 0 ;\n",
- " 2 5 ;\n",
- " 4 2 ;\n",
- " 4.5 2 ; % Added\n",
- " 5 2 ];\n",
- "update(smoothSignal)\n",
- "plotDataPoints(smoothSignal);"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 13,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "You can use Continuous type in place of Continuous Multi-Step type if you can specify flat segments explicitly as presented here. However, unlike Continuous Multi-Step type, redundant data points in flat segments are not removed in Continuous type because there is not enough information to do so robustly.\n",
- "\n",
- "\n",
- "## Piece-Wise Constant\n",
- "\n",
- "Piece-Wise Constant block block has one parameter:\n",
- "\n",
- "![\"image_3.png\"](\"\")
\n",
- "\n",
- "\n",
- "Data points parameter (N-by-2 matrix) corresponds to XYData below.\n",
- "\n",
- "\n",
- "Create a Signal Designer object to create a picewise constant signal trace.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "source": [
- "stepSignal = SignalDesigner(\"PieceWiseConstant\");"
- ],
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "Set an N-by-2 matrix for data points characterizing a step signal trace. In each row, first element and second element are X and Y values, respectively, defining a point (X, Y). X is treated as an independent variable. In Piece-Wise Constant block, X axis represents time. Y is treated as a function of X.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "source": [
- "stepSignal.XYData = [\n",
- " 0 1 ; ... a constant segment from 0 in X, of value 1 in Y\n",
- " 2 3 ; ... a constant segment from 2 in X, of value 3 in Y\n",
- " 4 2 ; ... a constnat segment from 4 in X, of value 2 in Y\n",
- " 5 2 ]; % a constnat segment from 5 in X, of value 2 in Y\n",
- "update(stepSignal)\n",
- "fig = plotDataPoints(stepSignal);\n",
- "fig.Position(3:4) = [500 300]; % width height"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 15,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "## Trace Generator\n",
- "\n",
- "Trace Generator block is an application of Continuous Multi-Step block. In Trace Generatgor block, signal trace is parameterized in a higher-level manner than Continuous Multi-Step block, and some parameters are randomized to generate a specific signal trace. The block internally uses SignalDesignUtility.buildXYData function in addition to Signal Designer.\n",
- "\n",
- "\n",
- "Trace Generator block has block parameters as follows.\n",
- "\n",
- "![\"image_4.png\"](\"\")
\n",
- "\n",
- "\n",
- " **Random seed** is used to randomly generate data from other block parameters which Signal Designer can take.\n",
- "\n",
- "\n",
- " **Interpolation step** is used to generate Continuous Multi-Step signal trace.\n",
- "\n",
- "\n",
- " **Initial constant duration** and **Initial data value** specify the initial value and duration of signal trace.\n",
- "\n",
- "\n",
- "**Number of transitions** specifies the number of flat segments excluding the initial and final flat segments.\n",
- "\n",
- "\n",
- "**Range of transition duration** and **Range of constant duration** specify value range to generate random numbers for transition and constant durations, respectively.\n",
- "\n",
- "\n",
- " **Range of data value** speicifies value range to randomly generate data values.\n",
- "\n",
- "\n",
- " **Final transition duration** specifies duration between the final flat segment and the one before.\n",
- "\n",
- "\n",
- " **Final constant duration** and **Final data value** speicify the duration and value of final flat segment, respectively.\n",
- "\n",
- "\n",
- " **Advanced** section has parameters as follows.\n",
- "\n",
- "\n",
- " **Data value scaler** is used to devide the data value that are normally generated. For example, if Data value scaler parameter is 1000, a data value normally generated to be 1 is converted to 0.001 by the scaler.\n",
- "\n",
- "\n",
- "**Time scaler** is used to devide the time points normally generated. This works the same way as Data value scaler, but for time.\n",
- "\n",
- "\n",
- "Code below corresponds to what Trace Generator block does in the block.\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "source": [
- "xydata = SignalDesignUtility.buildXYData( ...\n",
- " RandomSeed = 5, ... Random seed\n",
- " XInitialFlatLength = 3, ... Initial constant duration\n",
- " YInitialValue = 0, ...Initial data value\n",
- " NumTransitions = 2, ... Number of transitions\n",
- " TransitionRange = [ 2 5 ], ... Range of transition duration\n",
- " FlatRange = [ 5 10 ], ... Range of constant duration\n",
- " YRange = [ -5 10 ], ... Range of data value\n",
- " XFinalTransitionLength = 3, ... Final transition duration\n",
- " XFinalFlatLength = 4, ... Final constant duration\n",
- " YFinalValue = 0, ... Final data value\n",
- " XScale = 1, ... Data value scaler\n",
- " YScale = 1 ); % Time scaler\n",
- "\n",
- "sig = SignalDesigner(\"ContinuousMultiStep\");\n",
- "sig.XYData = xydata;\n",
- "sig.DeltaX = 0.1; % Interpolation step\n",
- "\n",
- "update(sig)\n",
- "\n",
- "plotDataPoints(sig);"
- ],
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "execution_count": 16,
- "output_type": "execute_result"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "*Copyright 2022-2023 The MathWorks, Inc.*\n",
- "\n",
- ""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "MATLAB (matlabkernel)",
- "language": "matlab",
- "name": "matlab"
- },
- "language_info": {
- "file_extension": ".m",
- "mimetype": "text/matlab",
- "name": "matlab",
- "nbconvert_exporter": "matlab",
- "pygments_lexer": "matlab",
- "version": "23.2.0.2459199"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
\ No newline at end of file
diff --git a/cache/dependencycache.graphml b/cache/dependencycache.graphml
index 5c01fe5..4844f96 100644
--- a/cache/dependencycache.graphml
+++ b/cache/dependencycache.graphml
@@ -27,7 +27,7 @@
true
false
false
- 2024-06-25T12:42:12.949408
+ 2024-06-25T12:56:01.442116
BT;PS
Product
@@ -977,828 +977,834 @@
true
+ $/Components/Vehicle1D/Test/Vehicle1DPerformanceDesignApp_uitest.m
+ File
+ 9pW/1tKLR/Z4/gYUyGSpVA==
+ true
+
+
$/Components/Vehicle1D/Test/Vehicle1D_UnitTest.m
File
31RU0VpwF5gUBVq/PUSHPw==
true
-
+
$/Components/Vehicle1D/Test/Vehicle1D_UnitTest_MQC.m
File
46QWHEHQlL8/awhEJth+MQ==
true
-
+
$/Components/Vehicle1D/Test/Vehicle1D_runtests.m
File
OtBejVsF0mrYr8qpcCDYng==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_loadCase.m
File
7Ptx0zLfkTvWT7h7qk85rg==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_loadCase_Accelerate.m
File
H3neq+Ihldv806DYii8E7A==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_loadCase_Braking.m
File
6io0oOMVhYOi+uB9HR+u3g==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_loadCase_Coastdown.m
File
hyjEbS6db2ocbOTLckQdYg==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_loadCase_Constant.m
File
HqVEGDCZtjnaxT2BI+4mpw==
true
-
+
$/Components/Vehicle1D/Utility/Configuration/Vehicle1D_setInitialConditions.m
File
Davk4lduO8U9JSUtB4LtsQ==
true
-
+
$/Components/Vehicle1D/Utility/LocalTasks/Vehicle1D_generateMarkdown.m
File
CwfxlPJVDbSCa9WDU9QoVQ==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_Description.html
File
37d7iMs73F4ZeEn97D2eIw==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_Description.mlx
File
9SMK5Ebh14vAZEmFg0s8Cg==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_PlotForce.m
File
XmjDJF+DTOa5oHepU6j28w==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_getLongitudinalVehicleInfo.m
File
Nvd+3u98kYY5+8ptH8p6kA==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_plotInputs.m
File
DTu1WXt0Dq6pwputfU+09w==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_plotProperties_Basic.m
File
Ow92bfr5SW4AgUbEAyxsDw==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_plotResults.m
File
lz1XRXv/T7kBQy27P6dpYg==
true
-
+
$/Components/Vehicle1D/Utility/Vehicle1D_resetHarnessModel.m
File
XSQWVhTDnlYkUZLy3M9eDQ==
true
-
+
$/Components/Vehicle1D/Vehicle1DPerformanceDesignApp.m
File
- i5ieDG2XAmyEDj4jxGM+mA==
+ CQNDsc2xUphTchXoDGB+/A==
true
-
+
$/Components/Vehicle1D/Vehicle1D_refsub_Basic.mdl
File
hOZPC6lfut3hfN0KIpWhMA==
true
-
+
$/Components/Vehicle1D/Vehicle1D_refsub_Basic_params.m
File
ygKxwVAQi+mwapVIRplj2Q==
true
-
+
$/Components/VehicleSpeedReference/Harness/VehSpdRef_harness_model.mdl
File
zPT5uj7k0Rmk62Emi6gOzA==
true
-
+
$/Components/VehicleSpeedReference/SimulationCases/VehSpdRef_Case_Constant.mlx
File
26+ygeG++Vzcn4JwJO6jBA==
true
-
+
$/Components/VehicleSpeedReference/SimulationCases/VehSpdRef_Case_FTP75.mlx
File
vfu7K0Qk4qHguWWYC+mJag==
true
-
+
$/Components/VehicleSpeedReference/SimulationCases/VehSpdRef_Case_HighSpeed.mlx
File
OzG6b4bTGNd8TPIWhJ7L5g==
true
-
+
$/Components/VehicleSpeedReference/SimulationCases/VehSpdRef_Case_SimpleDrivePattern.mlx
File
EqMpT4wf4W76ExrSgfqd3Q==
true
-
+
$/Components/VehicleSpeedReference/SimulationCases/VehSpdRef_Case_WLTP.mlx
File
qPDHo+EAwtz4CXQIKAwz+Q==
true
-
+
$/Components/VehicleSpeedReference/Test/VehSpdRef_UnitTest_MQC.m
File
/QWjl1e73yV7ilrCayqjjA==
true
-
+
$/Components/VehicleSpeedReference/Test/VehSpdRef_runtests.m
File
B63B6fJtRTSPAbqMrpRiGQ==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase.m
File
Qy7EMdFGkm/PKhwoIugdlA==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase_Constant.m
File
pVOzQ6YFdQiIVmXFeYpB3Q==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase_FTP75.m
File
3t3zhKVd4pdS4gicsVO8/A==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase_HighSpeed.m
File
N/HnkCPP7R2GmzZjwgaA1Q==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase_SimpleDrivePattern.m
File
RdQ+cwgaUF9fH2LnCyIRjg==
true
-
+
$/Components/VehicleSpeedReference/Utility/Configuration/VehSpdRef_loadCase_WLTP.m
File
0so1pzoyd3Hkd7fgXBEgJQ==
true
-
+
$/Components/VehicleSpeedReference/Utility/LocalTasks/VehSpdRef_generateMarkdown.m
File
UUDPg7eRL4Y9PvtcsHZgcw==
true
-
+
$/Components/VehicleSpeedReference/Utility/VehSpdRef_plotResults.m
File
dkilZ0N2PJ7qvuyr7jEAGg==
true
-
+
$/Components/VehicleSpeedReference/VehSpdRef_refsub_Basic.mdl
File
qWm/YH836qL1E2B1oFtdpw==
true
-
+
$/DetailedModelApplications/BEVProject_DetailedModelApplications.mlx
File
eOVdfs2JyG0zV61uMnwBrA==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDriveElecLossParams_text.m
File
V7zPMHfRGCwAgecMjIdoGw==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDrivePmsmFemParams.m
File
RFmnvAs/m8eD3F5v2DCJ/Q==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDrive_calcElectricEfficiency.mlx
File
LpxwcP25A8TDFjC2CK67Yg==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDrive_runSim.mlx
File
aH1UKjVDPOQIAq3N4N07RQ==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDrive_testHarness.mdl
File
h5NXlOD7pUYsyOLGSbPHjw==
true
-
+
$/DetailedModelApplications/MotorDrivePmsmFem/MotorDrive_testParams.m
File
gqmn+VzoOBvb1vex2w+f5Q==
true
-
+
$/DetailedModelApplications/MotorPmsmFem/PmsmFemParams.m
File
zAe31/MReDTU3wxrGc5tlg==
true
-
+
$/DetailedModelApplications/MotorPmsmFem/PmsmFemRefSub.mdl
File
OD4URoUGGOR6fgcxBTfBZg==
true
-
+
$/DetailedModelApplications/MotorPmsmFem/PmsmFem_ParamData.mat
File
k9IizXGgHb2TLyCPKZxCCA==
true
-
+
$/DetailedModelApplications/MotorPmsmFem/PmsmFem_testHarness.mdl
File
Yleig5SFbBGDhXwa5NTD0Q==
true
-
+
$/Interface/defineBus_HighVoltage.m
File
D35Ace4NHaDq6FuOJTB1HQ==
true
-
+
$/Interface/defineBus_Rotational.m
File
bsVElya6ENxG9/BOFdeQzw==
true
-
+
$/Test/BEVProject_UnitTest_MQC.m
File
SZsh5MVjchrp1K6Pke/XoA==
true
-
+
$/Test/BEVProject_runtests.m
File
iF5tbxQNXXXVCK2VSzrHYg==
true
-
+
$/Test/CheckProject/BEVProject_CheckProject.mlx
File
GxHCW1bmr0bcwCBBrDPcAw==
true
-
+
$/Test/CheckProject/BEVProject_CheckProject_UnitTest.m
File
SgtqZVoSUrF1UkJxNCMH8g==
true
-
+
$/Test/CheckProject/BEVProject_CheckProject_runtests.m
File
x77M+vfxtYxzmNxAbv7yuw==
true
-
+
$/Utility/AboutBEVProject.mlx
File
mD2lqrNSq4VIo4ttRy5gTg==
true
-
+
$/Utility/Checks/checkCallbackButton.m
File
Hp46fc/AlJoJAGlRn3G6ng==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/Button.m
File
x/vb+FLM/wneqB2tYqSrFg==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/CheckBox.m
File
YZI8ghvj1MZIOJKyWjK1hQ==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/DropDown.m
File
TP9f7sjRx47KkyffViBsAA==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/EditField.m
File
AufvG4bqWnR3fkYpUKrZuw==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/HorizontalLine.m
File
Mqe01ZULHOGy5EFrO1x+4A==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/Hyperlink.m
File
L3fFsTHDfIKPls+2Q0A6YA==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/Label.m
File
NLmYXBjQlEPRAPngtogjig==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/ListBox.m
File
20i/4kFxbEgT2pOiHHWJiw==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/LiteAppComponentBase.m
File
Amvn0XUCWTIN1PUuHED8+Q==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/LiteAppLayout.m
File
CRIr2LRauVwGZ+/JZz2trQ==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/LiteAppWindowHeader.m
File
Fr6x6T6wVxRYzvwrahmgxw==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/Panel.m
File
G0Wf2q76V19jUwD6RgXa5A==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/Table.m
File
G2k5/MHcpLtkcUYZkZgEEA==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppComponent/TextArea.m
File
4rsyGdIEXsIkdhP1wogCbA==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/Constant.m
File
n558T0Fu0O9bL/uZ6Mck7w==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/FindFolderPaths.m
File
OH9Pi/PU3pq6gKIRxQ+BIg==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/GetFileFolderPath.m
File
osMN4vT9uYOxICskLA5rJg==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/mustBeFunctionHandle.m
File
wL60wF55TU6Rs+sXN84qZA==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/mustBeFunctionHandleOrEmpty.m
File
HwY4usIH9LqXXN7kvoDo9Q==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/mustBeStringOrPositiveInteger.m
File
EokV6bKCCgydPIEsGtmjaQ==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/mustBeTextOrPositiveInteger.m
File
H/U3WrQGqreUptxnOvx0Cw==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/+LiteAppUtility/mustBeTextOrPositiveNumber.m
File
or4ikFYqOViUQ1DsZrE+Qg==
true
-
+
$/Utility/LiteAppAPI-v2-R2023b/LiteAppWindow.m
File
RMfCU5gm4qMktBgU3ltjEg==
true
-
+
$/Utility/LocalTasks/LiveScript_Utility.m
File
Uvaq3k+Bjnj1sIlkEjugBQ==
true
-
+
$/Utility/LocalTasks/generateMarkdown_fromLiveScript.m
File
mQhPD9Sz54hl8/n3ResJ2A==
true
-
+
$/Utility/LocalTasks/openFile.m
File
4CMFs+zrdCmvzb90Jg38cg==
true
-
+
$/Utility/LocalTasks/openFile_SignalDesignerExample.m
File
i7xvJ5hUhdDyIvawGlt6Aw==
true
-
+
$/Utility/LocalTasks/saveModels.m
File
R7nqOEdn3ofxLAWlK02FUQ==
true
-
+
$/Utility/LocalTasks/screenshotSimulink.m
File
akrcRpDuaJp95OLGiDK/3g==
true
-
+
$/Utility/LocalTasks/setModelWindowPositionAndSize.m
File
/VyPJixlYVGU/KGFbAj0RQ==
true
-
+
$/Utility/SignalDesigner/+SignalDesignUtility/buildTrace.m
File
m7W+rmiutNh2xCUueHqHdg==
true
-
+
$/Utility/SignalDesigner/+SignalDesignUtility/buildXYData.m
File
aNulEhwkMYkx4owwHU11ww==
true
-
+
$/Utility/SignalDesigner/+SignalSourceBlockCallback/plotContinuous.m
File
ntLA/PWrVsMOdqIn8o2jaw==
true
-
+
$/Utility/SignalDesigner/+SignalSourceBlockCallback/plotContinuousMultiStep.m
File
bgdPBQpbIAFBHhzoUZ4hGA==
true
-
+
$/Utility/SignalDesigner/+SignalSourceBlockCallback/plotPieceWiseConstant.m
File
fE/xhhuraunGVavvNz2ndA==
true
-
+
$/Utility/SignalDesigner/+SignalSourceBlockCallback/plotTraceGenerator.m
File
FyB6eXtDDrh9WMFtbj8DPw==
true
-
+
$/Utility/SignalDesigner/+SignalSourceBlockCallback/setDataToLookupTableBlock.m
File
6fdmPcD+5hClQ9F8aawGYg==
true
-
+
$/Utility/SignalDesigner/SignalDesigner.m
File
ihXT7ILN7EFSNZ6LoBnrlw==
true
-
+
$/Utility/SignalDesigner/SignalDesigner_example.mlx
File
JPB5G0Qwsm+p0B3zOa2qWQ==
true
-
+
$/Utility/SignalDesigner/SignalSourceBlockLibrary.mdl
File
htemt3s8FztxyzPsS0RRtA==
true
-
+
$/Utility/SignalDesigner/SignalSourceBlocks_example.mdl
File
h3/LBV9sh4WOi5U1ZmOK9A==
true
-
+
$/Utility/TestTools/BEVTestCase.m
File
4i/XvKcEAvWDlPP1AIbAhw==
true
-
+
$/Utility/adjustFigureHeightAndWindowYPosition.m
File
Z1BVTtYUaq3+OAKvNH5cWA==
true
-
+
$/Utility/atProjectStartUp.m
File
VxxMu6XuAcawGOCPEaTvww==
true
-
+
$/Utility/generateHTML.m
File
LnTW974RfrIjaMPiqZ4D0g==
true
-
+
$/Utility/getSimscapeValueFromBlockParameter.m
File
hYmurozxhyvJWD2zv8bnlw==
true
-
+
$/Utility/openTestManager.m
File
zwP49CUZytVc++3suV7Uqg==
true
-
+
$/Utility/open_codeAnalyzer.m
File
WEtijiKn58XjWsgaW8P2ng==
true
-
+
$/Utility/plotSimulationResultSignal.m
File
5mNI3toUwYmixZmtxeLCOw==
true
-
+
$/Utility/setMinimumYRange.m
File
d3lGuwQ+Malyma9dfFGnKQ==
true
-
+
$/Utility/verifyBlockCheckbox_custom.m
File
gltcWq7qJHgazjcLAQWHfQ==
true
-
+
$/Utility/verifyBlockDropdown_custom.m
File
kwgOQuD73Lv6d/9ubus4QA==
true
-
+
$/Utility/verifyBlockInitialPriority_custom.m
File
JDoBghO0uZxQBeASPOFORQ==
true
-
+
$/Utility/verifyBlockParameter_custom.m
File
oFdABstRiLBWj+pXBLyNhA==
true
-
+
$/buildfile.m
File
Q8udwAdnzrW85rLnGHNVkg==
true
-
+
$/cache/buildtool-results/code-coverage.xml
File
1B2M2Y8AsgTpgAmY7PhCfg==
true
-
+
$/cache/buildtool-results/test-results.xml
File
HYr3LE9a8fAzPy3rOqB36Q==
true
-
+
$/cache/simcache/BEVController_harness_model.slxc
File
A6oYDiqtNKaguYjE0kwYug==
true
-
+
$/cache/simcache/BEV_system_model.slxc
File
byBewUrdF6cDx3ZWGat3Sw==
true
-
+
$/cache/simcache/BatteryHV_harness_model.slxc
File
FIiWgAjZ914dtIKk35iUjg==
true
-
+
$/cache/simcache/CtrlEnv_harness_model.slxc
File
0UBn/WVl2tJGclqRyuGX/Q==
true
-
+
$/cache/simcache/MotorDriveUnit_harness_model.slxc
File
PCFaDR21zp6SCIXC0DitVw==
true
-
+
$/cache/simcache/Vehicle1D_harness_model.slxc
File
KJDtJsXEB2uemPjJgJK3TQ==
true
-
+
+ DPKG_CV;DR;PZ;SL;SF;RQ;XP
+ Product
+
+
+
+
LD
Product
-
+
ML
Product
-
+
MotorDrive_testHarness_notes.mldatx
File
1B2M2Y8AsgTpgAmY7PhCfg==
false
-
+
PS
Product
-
+
PW;DR;MB;VE;MT
Product
-
+
PW;RB;SS;VE
Product
-
+
PW;SS;VE
Product
-
+
ParameterFile
File
-
+
PmsmFem_testHarness_notes.mldatx
File
1B2M2Y8AsgTpgAmY7PhCfg==
false
-
+
SL
Product
-
+
SL;XP;SF
Product
-
+
SS
Product
-
+
TE
Product
-
- Vehicle1DApp_PerformanceDesign.GetSimscapeValue
- File
-
-
-
-
+
Vehicle1DBasic_testHarness_notes.mldatx
File
1B2M2Y8AsgTpgAmY7PhCfg==
false
-
+
value
File
-
+
Toolbox
Toolbox
@@ -1808,7 +1814,7 @@
Line
17
-
+
Toolbox
MATLABFile,FunctionCall
4
@@ -1821,13 +1827,13 @@
Line
7
-
+
MATLABFile,FunctionCall
9
Line
9
-
+
Toolbox
Toolbox
@@ -1837,13 +1843,13 @@
Line
128
-
+
MATLABFile,FunctionCall
14
Line
14
-
+
MATLABFile,FunctionCall
15
Line
@@ -1855,7 +1861,7 @@
Line
37
-
+
Toolbox
Toolbox
@@ -1871,19 +1877,19 @@
2182
Block
-
+
ModelCallback,PreLoadFcn,FunctionCall
1
-
+
ModelCallback,PreLoadFcn,FunctionCall
2
-
+
Runtime
SimulinkCache
-
+
Toolbox
Toolbox
@@ -1894,7 +1900,7 @@
BEV_system_model/High Voltage Battery
Block
-
+
SubsystemReference
BEV_system_model/Longitudinal Vehicle
2170
@@ -1908,7 +1914,7 @@
BEV_system_model/Motor Drive Unit
Block
-
+
Toolbox
LibraryLink
BEV_system_model/PS-Simulink
@@ -1925,7 +1931,7 @@ Converter
BEV_system_model/Reduction Gear
Block
-
+
Toolbox
LibraryLink
BEV_system_model/Solver/Solver Configuration
@@ -1939,7 +1945,7 @@ Converter
Line
11
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -1952,13 +1958,13 @@ Converter
Line
3
-
+
MATLABFile,FunctionCall
4
Line
4
-
+
Toolbox
Toolbox
@@ -1968,7 +1974,7 @@ Converter
Line
12
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -1981,13 +1987,13 @@ Converter
Line
4
-
+
MATLABFile,FunctionCall
5
Line
5
-
+
Toolbox
Toolbox
@@ -1997,7 +2003,7 @@ Converter
Line
11
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -2010,13 +2016,13 @@ Converter
Line
3
-
+
MATLABFile,FunctionCall
4
Line
4
-
+
Toolbox
Toolbox
@@ -2026,7 +2032,7 @@ Converter
Line
11
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -2039,13 +2045,13 @@ Converter
Line
3
-
+
MATLABFile,FunctionCall
4
Line
4
-
+
Toolbox
Toolbox
@@ -2055,7 +2061,7 @@ Converter
Line
11
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -2068,13 +2074,13 @@ Converter
Line
3
-
+
MATLABFile,FunctionCall
4
Line
4
-
+
Toolbox
Toolbox
@@ -2084,7 +2090,7 @@ Converter
Line
12
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -2097,13 +2103,13 @@ Converter
Line
4
-
+
MATLABFile,FunctionCall
5
Line
5
-
+
Toolbox
Toolbox
@@ -2113,7 +2119,7 @@ Converter
Line
11
-
+
Toolbox
MATLABFile,FunctionCall
2
@@ -2126,17 +2132,17 @@ Converter
Line
3
-
+
MATLABFile,FunctionCall
4
Line
4
-
+
Toolbox
Toolbox
-
+
Toolbox
MATLABFile,FunctionCall
117
@@ -2144,14 +2150,14 @@ Converter
Line
117
-
+
MATLABFile,FunctionCall
118
MQC_CallbackButtons_1
Line
118
-
+
MATLABFile,Inheritance
1
Line
@@ -2164,7 +2170,7 @@ Converter
Line
21
-
+
Toolbox
MATLABFile,FunctionCall
26
@@ -2179,7 +2185,7 @@ Converter
Line
27
-
+
Toolbox
MATLABFile,FunctionCall
32
@@ -2243,7 +2249,7 @@ Converter
Line
69
-
+
Toolbox
MATLABFile,FunctionCall
69
@@ -2265,7 +2271,7 @@ Converter
Line
74
-
+
Toolbox
MATLABFile,FunctionCall
74
@@ -2287,7 +2293,7 @@ Converter
Line
81
-
+
Toolbox
MATLABFile,FunctionCall
86
@@ -2302,79 +2308,79 @@ Converter
Line
90
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
MATLABFile,FunctionCall
103
BEV_plotResultsCompact
Line
103
-
+
MATLABFile,FunctionCall
34
BEV_plotResultsCompact
Line
34
-
+
MATLABFile,FunctionCall
44
BEV_plotResultsCompact
Line
44
-
+
MATLABFile,FunctionCall
53
BEV_plotResultsCompact
Line
53
-
+
MATLABFile,FunctionCall
63
BEV_plotResultsCompact
Line
63
-
+
MATLABFile,FunctionCall
75
BEV_plotResultsCompact
Line
75
-
+
MATLABFile,FunctionCall
84
BEV_plotResultsCompact
Line
84
-
+
MATLABFile,FunctionCall
93
BEV_plotResultsCompact
Line
93
-
+
Toolbox
Toolbox
-
+
MATLABFile,FunctionCall
23
Line
@@ -2404,11 +2410,11 @@ Converter
Line
39
-
+
Toolbox
Toolbox
-
+
MATLABFile,FunctionCall
23
Line
@@ -2438,22 +2444,22 @@ Converter
Line
46
-
+
Toolbox
Toolbox
-
+
MATLABFile,FunctionCall
6
BEV_generateMarkdown
Line
6
-
+
Toolbox
Toolbox
-
+
Toolbox
MATLABFile,FunctionCall
13
@@ -2466,21 +2472,21 @@ Converter
Line
16
-
+
MATLABFile,FunctionCall
27
Line
27
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
@@ -2488,15 +2494,15 @@ Converter
ModelCallback,PreLoadFcn,FunctionCall
1
-
+
Runtime
SimulinkCache
-
+
Toolbox
Toolbox
-
+
Notes
@@ -2506,7 +2512,7 @@ Converter
BEVController_harness_model/BEV Speed Tracking Controller
Block
-
+
BlockCallback,MaskCallbackString,FunctionCall
BEVController_harness_model/Inputs/Smooth steps
858
@@ -2514,7 +2520,7 @@ Converter
Block
1
-
+
BlockCallback,MaskInitialization,FunctionCall
BEVController_harness_model/Inputs/Smooth steps
858
@@ -2528,18 +2534,18 @@ Converter
Line
8
-
+
Toolbox
Toolbox
-
+
Toolbox
MATLABFile,FunctionCall
2
Line
2
-
+
Toolbox
MATLABFile,FunctionCall
3
@@ -2552,17 +2558,17 @@ Converter
Line
5
-
+
Toolbox
Toolbox
-
+
MATLABFile,Inheritance
1
Line
1
-
+
Toolbox
MATLABFile,FunctionCall
22
@@ -2591,15 +2597,15 @@ Converter
Line
39
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
MATLABFile,FunctionCall
25
@@ -2607,7 +2613,7 @@ Converter
Line
25
-
+
Toolbox
MATLABFile,FunctionCall
26
@@ -2615,7 +2621,7 @@ Converter
Line
26
-
+
Toolbox
Toolbox
@@ -2626,30 +2632,30 @@ Converter
Line
7
-
+
Toolbox
Toolbox
-
+
MATLABFile,FunctionCall
6
BEVController_generateMarkdown
Line
6
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/Charge
@@ -2657,7 +2663,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/Charge
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/Gain
@@ -2665,7 +2671,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/Gain
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/I^2
@@ -2673,7 +2679,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/I^2
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Add
@@ -2681,7 +2687,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Add
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Constant
@@ -2689,7 +2695,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Constant
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Divide
@@ -2697,7 +2703,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Divide
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Saturation
@@ -2705,7 +2711,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/PS Saturation
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2715,7 +2721,7 @@ Converter1
Converter1
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2725,7 +2731,7 @@ Converter2
Converter2
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2735,7 +2741,7 @@ Converter3
Converter3
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2745,7 +2751,7 @@ Converter4
Converter4
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2755,7 +2761,7 @@ Converter6
Converter6
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/PS-Simulink
@@ -2765,7 +2771,7 @@ Converter
Converter
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/Power
@@ -2773,7 +2779,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/Power
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Battery Status/IV Status/R
@@ -2781,7 +2787,7 @@ Converter
BatteryHV_refsub_Basic/Battery Status/IV Status/R
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Current Sensor
@@ -2789,7 +2795,7 @@ Converter
BatteryHV_refsub_Basic/Current Sensor
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/DC Voltage Source
@@ -2797,7 +2803,7 @@ Converter
BatteryHV_refsub_Basic/DC Voltage Source
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Ground
@@ -2805,7 +2811,7 @@ Converter
BatteryHV_refsub_Basic/Ground
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Internal Resistance
@@ -2813,7 +2819,7 @@ Converter
BatteryHV_refsub_Basic/Internal Resistance
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_Basic/Voltage Sensor
@@ -2821,7 +2827,7 @@ Converter
BatteryHV_refsub_Basic/Voltage Sensor
Block
-
+
MATLABFile,FunctionCall
12
Line
@@ -2839,15 +2845,15 @@ Converter
Line
37
-
+
Toolbox
Toolbox
-
+
Toolbox
Toolbox
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Ambient Thermal Mass
@@ -2855,7 +2861,7 @@ Converter
BatteryHV_refsub_System/Ambient Thermal Mass
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/Charge
@@ -2863,7 +2869,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/Charge
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/Gain
@@ -2871,7 +2877,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/Gain
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/I^2
@@ -2879,7 +2885,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/I^2
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS Add
@@ -2887,7 +2893,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/PS Add
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS Constant
@@ -2895,7 +2901,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/PS Constant
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS Divide
@@ -2903,7 +2909,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/PS Divide
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS Saturation
@@ -2911,7 +2917,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/PS Saturation
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2921,7 +2927,7 @@ Converter1
Converter1
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2931,7 +2937,7 @@ Converter2
Converter2
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2941,7 +2947,7 @@ Converter3
Converter3
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2951,7 +2957,7 @@ Converter4
Converter4
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2961,7 +2967,7 @@ Converter6
Converter6
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/PS-Simulink
@@ -2971,7 +2977,7 @@ Converter
Converter
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/Power
@@ -2979,7 +2985,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/Power
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/IV Status/R
@@ -2987,7 +2993,7 @@ Converter
BatteryHV_refsub_System/Battery Status/IV Status/R
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/PS-Simulink
@@ -2997,7 +3003,7 @@ Converter5
Converter5
Block
-
+
Toolbox
LibraryLink
BatteryHV_refsub_System/Battery Status/PS-Simulink
@@ -3007,7 +3013,7 @@ Converter7
Converter7
Block
-
+