-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier-trainer.py
139 lines (119 loc) · 4.45 KB
/
classifier-trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import time
from pathlib import Path
import argparse
import torch
import lightning.pytorch as pl
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
from lightning_modules import FUCCIClassifier, FUCCIDataModule
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:1024"
torch.set_float32_matmul_precision('medium')
chkpt = Path("/data/ishang/fucci_vae/FUCCI_total_VAE_2023_06_28_07_08/lightning_logs/277-963202.12.ckpt")
parser = argparse.ArgumentParser(description="Train a model to predict FUCCI channels from reference.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-d", "--data", required=True, help="path to dataset")
parser.add_argument("-r", "--augment", action="store_true", help="augment the dataset (random rotations)")
parser.add_argument("-e", "--epochs", type=int, default=100, help="maximum number of epochs to train for")
parser.add_argument("-m", "--checkpoint", help="path to checkpoint for common pretrained autoencoder")
parser.add_argument("-p", "--pretrained", help="path to pretrained model to load from")
parser.add_argument("-a", "--all", action="store_true", help="train all of the model parameters")
parser.add_argument("-w", "--warmup", action="store_true", help="warmup the model learning rate over 10 epochs")
parser.add_argument("-c", "--cpu", action="store_true", help="run on CPU")
args = parser.parse_args()
if args.checkpoint is not None:
if not Path(args.checkpoint).exists():
raise ValueError("Checkpoint path does not exist.")
else:
chkpt = Path(args.checkpoint)
config = {
"imsize": 256,
"latent_dim": 512,
"batch_size": 8,
"devices": [7],
# "devices": list(range(0, 4)),
# "devices": list(range(4, torch.cuda.device_count())),
# "devices": list(range(0, torch.cuda.device_count())),
# "devices": list(range(2, torch.cuda.device_count())),
"devices": [1, 2, 3],
# "devices": [2, 3, 4, 5, 6, 7],
"num_workers": 1,
# "num_workers": 4,
# "num_workers": 5,
# "num_workers": 8,
"split": (0.80, 0.10, 0.10),
"lr": 5e-5,
"grad_clip": 1e3,
# "eps": 1e-12,
"epochs": args.epochs,
"mapper_mults": (2, 2, 2),
"warmup": args.warmup,
"augmentation": args.augment,
}
def print_with_time(msg):
print(f"[{time.strftime('%m/%d/%Y @ %H:%M')}] {msg}")
print_with_time("Setting up run file folders...")
fucci_path = Path(args.data)
project_name = f"FUCCI_embedding_classifier"
log_folder = Path(f"/data/ishang/fucci_vae/{project_name}_{time.strftime('%Y_%m_%d_%H_%M')}")
if not log_folder.exists():
os.makedirs(log_folder, exist_ok=True)
lightning_dir = log_folder / "lightning_logs"
wandb_dir = log_folder
print_with_time("Setting up data module...")
dm = FUCCIDataModule(
data_dir=fucci_path,
dataset="all",
imsize=config["imsize"],
split=config["split"],
batch_size=config["batch_size"],
num_workers=config["num_workers"]
)
print_with_time("Setting up model...")
if args.pretrained is not None:
model = FUCCIClassifier.load_from_checkpoint(args.pretrained)
model.train_all = args.all
model.lr = config["lr"]
model.warmup = config["warmup"]
else:
model = FUCCIClassifier(
ae_checkpoint=chkpt,
latent_dim=config["latent_dim"],
lr=config["lr"],
layer_widths=config["mapper_mults"],
train_all=args.all,
warmup=config["warmup"]
)
wandb_logger = WandbLogger(
project=project_name,
log_model=True,
save_dir=wandb_dir,
config=config
)
wandb_logger.watch(model, log="all", log_freq=10)
val_checkpoint_callback = ModelCheckpoint(
save_top_k=1,
monitor="validate/loss",
mode="min",
dirpath=lightning_dir,
filename="{epoch:02d}-{validate/loss:.2f}",
auto_insert_metric_name=False,
)
latest_checkpoint_callback = ModelCheckpoint(dirpath=lightning_dir, save_last=True)
trainer = pl.Trainer(
default_root_dir=lightning_dir,
accelerator="gpu" if not args.cpu else "cpu",
devices=config["devices"] if not args.cpu else "auto",
strategy='ddp_find_unused_parameters_true',
logger=wandb_logger,
max_epochs=config["epochs"],
gradient_clip_val=config["grad_clip"],
deterministic=True,
callbacks=[
val_checkpoint_callback,
latest_checkpoint_callback,
LearningRateMonitor(logging_interval='step'),
]
)
print_with_time("Training model...")
trainer.fit(model, dm)