-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbase.py
219 lines (163 loc) · 6.87 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from functools import reduce
from operator import mul
import numpy as np
import torch
from torch import nn
from continual_ai.cl_settings.base import ClassificationTask
from continual_ai.datasets import MNIST, SVHN, CIFAR10, CIFAR100
def get_dataset(dataset_name, device):
transformer = lambda x: (torch.tensor(x, dtype=torch.float32, device=device) / 255)
target_transformer = lambda y: (torch.tensor(y, device=device))
if dataset_name == 'mnist':
dataset = MNIST(transformer=transformer,
target_transformer=target_transformer)
elif dataset_name == 'cifar10':
dataset = CIFAR10(transformer=transformer,
target_transformer=target_transformer)
elif dataset_name == 'cifar100':
dataset = CIFAR100(transformer=transformer,
target_transformer=target_transformer)
elif dataset_name == 'svhn':
dataset = SVHN(transformer=transformer,
target_transformer=target_transformer)
classes = len(dataset.labels)
sample_shape = dataset.sample_dimension
image_channels = sample_shape[0]
image_shape = sample_shape[-1]
return dataset, transformer, image_channels, image_shape, classes
def classification_score_on_task(encoder: torch.nn.Module, solver: torch.nn.Module,
task: ClassificationTask, evaluate_task_index: int = None):
with torch.no_grad():
encoder.eval()
solver.eval()
task.set_labels_type('task')
true_labels = []
predicted_labels = []
if evaluate_task_index is None:
evaluate_task_index = task.index
for x, y in task:
true_labels.extend(y)
emb = encoder(x)
a = solver(emb, task=evaluate_task_index)
predicted_labels.extend(torch.nn.functional.softmax(a, dim=1).max(dim=1)[1].tolist())
eq = np.asarray(true_labels) == np.asarray(predicted_labels)
score = eq.sum() / len(eq)
return score
def get_predictions(encoder: torch.nn.Module, solver: torch.nn.Module,
task: ClassificationTask, evaluate_task_index: int = None):
with torch.no_grad():
encoder.eval()
solver.eval()
task.set_labels_type('task')
true_labels = []
predicted_labels = []
if evaluate_task_index is None:
evaluate_task_index = task.index
for j, x, y in task:
true_labels.extend(y.tolist())
emb = encoder(x)
a = solver(emb, task=evaluate_task_index)
predicted_labels.extend(a.max(dim=1)[1].tolist())
return np.asarray(true_labels), np.asarray(predicted_labels)
class Reshape(nn.Module):
def __init__(self, shape):
super(Reshape, self).__init__()
self.shape = shape
def forward(self, x):
return x.view((-1, *self.shape))
class Encoder(nn.Module):
def __init__(self, dataset, proj_dim=None, cond_size=0):
super().__init__()
if dataset == 'mnist':
if proj_dim is None:
proj_dim = 100
encoder = nn.Sequential(
nn.Conv2d(1, 12, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(12, 24, 4, stride=2, padding=0),
# nn.ReLU()
)
embedding_dim = encoder(torch.rand((1, 1, 28, 28))).shape[1:]
flat_embedding_dim = reduce(mul, embedding_dim, 1)
projector = nn.Linear(flat_embedding_dim + cond_size, proj_dim)
encoder.add_module('flatten', nn.Flatten()
)
elif dataset == 'svhn' or dataset == 'cifar10' or dataset == 'cifar100':
if proj_dim is None:
if dataset == 'svhn':
proj_dim = 100
else:
proj_dim = 200
encoder = nn.Sequential(
nn.Conv2d(3, 24, 3, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(24, 24, 3, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(24, 48, 3, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(48, 48, 4, stride=2, padding=0),
# nn.ReLU()
)
embedding_dim = encoder(torch.rand((1, 3, 32, 32))).shape[1:]
flat_embedding_dim = reduce(mul, embedding_dim, 1)
projector = nn.Linear(flat_embedding_dim + cond_size, proj_dim)
# rec_projector = nn.Linear(flat_embedding_dim + cond_size, proj_dim)
encoder.add_module('flatten', nn.Flatten())
else:
assert False
self.encoder = encoder
self.embedding_dim_before_projection = embedding_dim
self.flat_cnn_size = flat_embedding_dim
self.embedding_dim = proj_dim
self.projector = projector
def flatten_cnn(self, x):
emb = self.encoder(x)
return emb
def forward(self, x, y=None):
emb = self.flatten_cnn(x)
if self.projector is not None:
if y is not None:
emb = self.projector(torch.cat((emb, y), -1))
else:
emb = self.projector(emb)
return emb
class Decoder(nn.Module):
def __init__(self, dataset, encoder: Encoder, cond_size=0):
super().__init__()
proj_dim = encoder.embedding_dim
embedding_dim_before_projection = encoder.embedding_dim_before_projection
flat_embedding_dim_before_projection = reduce(mul, embedding_dim_before_projection, 1)
if dataset == 'mnist':
decoder = nn.Sequential(
nn.ReLU(),
nn.Linear(proj_dim + cond_size, flat_embedding_dim_before_projection),
Reshape(embedding_dim_before_projection),
nn.ReLU(),
nn.ConvTranspose2d(24, 12, 4, stride=2, padding=0),
nn.ReLU(),
nn.ConvTranspose2d(12, 1, 4, stride=2, padding=1),
nn.Sigmoid(),
)
elif dataset == 'svhn' or dataset == 'cifar10' or dataset == 'cifar100':
decoder = nn.Sequential(
nn.ReLU(),
nn.Linear(proj_dim + cond_size, flat_embedding_dim_before_projection),
Reshape(embedding_dim_before_projection),
nn.ReLU(),
nn.ConvTranspose2d(48, 48, 4, stride=2, padding=0),
nn.ReLU(),
nn.ConvTranspose2d(48, 24, 3, stride=1, padding=0),
nn.ReLU(),
nn.ConvTranspose2d(24, 24, 3, stride=1, padding=0),
nn.ReLU(),
nn.ConvTranspose2d(24, 3, 3, stride=1, padding=0),
nn.Sigmoid(),
)
else:
assert False
self.decoder = decoder
def forward(self, emb, y=None):
if y is not None:
emb = torch.cat((emb, y), -1)
x = self.decoder(emb)
return x