-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
106 lines (87 loc) · 2.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torchvision
from dataloading import CarvanaDataset
from torch.utils.data import DataLoader
import os
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("===> Saving Checkpoint")
torch.save(state,filename)
print(f"Saved Checkpoint at: {os.getcwd()}/{filename}")
def load_checkpoint(checkpoint, model):
print("Loading Checkpoint")
model.load_state_dict(checkpoint['state_dict'])
def get_loaders(
train_dir,
train_maskdir,
val_dir,
val_maskdir,
batch_size,
train_transform,
val_transform,
num_workers=4,
pin_memory = True
):
train_ds = CarvanaDataset(
image_dir=train_dir,
mask_dir=train_maskdir,
transform=train_transform
)
train_loaders = DataLoader(
train_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True
)
val_ds = CarvanaDataset(
image_dir=val_dir,
mask_dir=val_maskdir,
transform=val_transform
)
val_loader = DataLoader(
val_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle = False
)
return train_loaders,val_loader
def check_accuracy(loader,model, device="mps"):
#Segmentation for each individual pixel
num_correct=0
num_pixels=0
dice_score = 0
model.eval()
with torch.no_grad():
for x,y in loader:
x = x.to(device)
y = y.to(device).unsqueeze(1)
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
num_correct += (preds == y).sum()
num_pixels += torch.numel(preds)
dice_score += (2*(preds*y).sum())/(
(preds + y).sum() + 1e-8
)
print(
f'''Got {num_correct}/{num_pixels} with acc
{num_correct/num_pixels*100:.4f}
'''
)
print(f'Dice Score: {dice_score/len(loader)}')
model.train()
def save_predicitions_as_imgs(
loader, model, folder="saved_image/",device="mps"
):
model.eval()
for idx,(x,y) in enumerate(loader):
x = x.to(device=device)
with torch.no_grad():
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
torchvision.utils.save_image(
preds, f'{folder}/pred_{idx}.png'
)
torchvision.utils.save_image(y.unsqueeze(1),
f"{folder}/label_{idx}.png")
model.train()