-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdola_t5.py
256 lines (215 loc) · 14 KB
/
dola_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import argparse
import time
import csv
import tqdm
import os
import json
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
from transformers.generation.stopping_criteria import StoppingCriteriaList, T5StoppingCriteria
import argparse
import warnings
import pandas as pd
import numpy as np
class DoLa:
def __init__(self, model_name, device, num_gpus, max_gpu_memory=27):
self.model_name = model_name
self.device = device
self.num_gpus = num_gpus
self.stopping_criteria = None
self.max_gpu_memory = max_gpu_memory
self.model, self.tokenizer = self.load_model(model_name)
def load_model(self, model_name):
if self.device == "cuda":
kwargs = {"torch_dtype": torch.float16, "offload_folder": f"{model_name}/offload"}
if self.num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
self.num_gpus = int(self.num_gpus)
if self.num_gpus != 1:
kwargs.update({
"device_map": "auto",
"max_memory": {i: f"{self.max_gpu_memory}GiB" for i in range(self.num_gpus)},
})
elif self.device == "cpu":
kwargs = {}
else:
raise ValueError(f"Invalid device: {self.device}")
tokenizer = AutoTokenizer.from_pretrained(model_name if not 'vicuna' in model_name else 'huggyllama/llama-7b')
if 't5' in model_name:
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, low_cpu_mem_usage=True, **kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_name,
low_cpu_mem_usage=True, **kwargs)
if self.device == "cuda" and self.num_gpus == 1:
model.cuda()
return model, tokenizer
def set_stop_words(self, stop_words):
self.stop_words = stop_words
self.stopping_criteria = StoppingCriteriaList()
list_stop_word_ids = []
for stop_word in self.stop_words:
stop_word_ids = self.tokenizer.encode('\n' + stop_word)[3:]
list_stop_word_ids.append(stop_word_ids)
print("Added stop word: ", stop_word, 'with the ids', stop_word_ids, flush=True)
self.stopping_criteria.append(T5StoppingCriteria(list_stop_word_ids))
def generate(self, input_text, max_new_tokens=256, top_p=0.95, top_k=0, temperature=0.8, mature_layer=None, premature_layer=None, candidate_premature_layers=[], mode='baseline', verbose=True, remove_stop_words=False, relative_top=0.1, print_logits=False, **kwargs):
with torch.no_grad():
input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.device)
max_len = input_ids.shape[-1] + max_new_tokens
if mode == 'baseline':
outputs = self.model.generate(input_ids, max_length=max_len, num_return_sequences=1,
output_scores=True, return_dict_in_generate=True, dola_decoding=False,
top_p=top_p, top_k=top_k, temperature=temperature, stopping_criteria=self.stopping_criteria, **kwargs)
elif mode == 'dola-static':
assert mature_layer is not None, "mature_layer must be specified"
assert premature_layer is not None, "premature_layer must be specified"
outputs = self.model.generate(input_ids, max_length=max_len, num_return_sequences=1,
output_scores=True, return_dict_in_generate=True, dola_decoding=True,
mature_layer=mature_layer, premature_layer=premature_layer,
top_p=top_p, top_k=top_k, temperature=temperature, stopping_criteria=self.stopping_criteria, relative_top=relative_top, **kwargs)
elif mode == 'dola':
assert mature_layer is not None, "mature_layer must be specified"
assert candidate_premature_layers is not None, "candidate_premature_layers must be specified"
outputs = self.model.generate(input_ids, max_length=max_len, num_return_sequences=1,
output_scores=True, return_dict_in_generate=True, dola_decoding=True,
top_p=top_p, top_k=top_k, temperature=temperature, stopping_criteria=self.stopping_criteria, relative_top=relative_top,
mature_layer=mature_layer, premature_layer=None, candidate_premature_layers=candidate_premature_layers, print_logits=print_logits, **kwargs,)
premature_layer_dist = outputs.premature_layer_dist
sequences, scores = outputs.sequences, outputs.scores
js_divs, logits_by_layer = outputs.js_divs, outputs.logits_by_layer
if print_logits and js_divs is not None and logits_by_layer is not None:
self.print_detailed_layer_stats(js_divs, logits_by_layer)
# skip the tokens in the input prompt
# gen_sequences = sequences[:, input_ids.shape[-1]:][0, :]
gen_sequences = sequences[:, 0:][0, :]
gen_arr = gen_sequences.cpu().numpy()
output_str = self.tokenizer.decode(gen_sequences, skip_special_tokens=True)
# if verbose:
# print('MODEL OUTPUT: \n{0}'.format(output_str))
if remove_stop_words:
for stop_word in self.stop_words:
length_to_remove = len(stop_word)
if output_str[-length_to_remove:] == stop_word:
output_str = output_str[:-length_to_remove]
output_str = output_str.strip()
if self.device:
torch.cuda.empty_cache()
return output_str, (premature_layer_dist if mode == 'dola' else None)
def print_detailed_layer_stats(self, js_divergences, logits_by_layer):
k = 5 # The number of results to show for each layer
for token_idx in range(len(js_divergences)):
# Print the JS Divergences for each layer
print("JS DIVERGENCES:")
print(js_divergences[token_idx])
print("\nTOKEN PREDICTIONS BY LAYER")
top_k_layer_logits = [torch.topk(l,k,sorted=True) for l in logits_by_layer[token_idx]]
for top_k_logits in top_k_layer_logits:
layer_str = ""
for i, enc_token in enumerate(top_k_logits.indices[0]):
token = self.tokenizer.decode(enc_token, skip_special_tokens=True)
layer_str += (f'Token "{token}": {top_k_logits.values[0][i]}, ')
print(layer_str[:-2])
tokens_to_track = top_k_logits.indices[0]
print("\nTRACKING TOKEN INDICES")
for layer_logits in logits_by_layer[token_idx]:
position_str = ""
sorted_logits, sorted_tokens = torch.sort(layer_logits[0], descending=True)
sorted_positions = {int(t): int(sorted_tokens.tolist().index(t)) for t in tokens_to_track}
for token_id, position in sorted_positions.items():
token = self.tokenizer.decode(token_id, skip_special_tokens=True)
position_str += f'Token "{token}" Position {position}, '
print(position_str[:-2])
print()
def get_relative_top_filter(self, scores: torch.FloatTensor, relative_top: float = 0.1, min_tokens_to_keep: int = 1):
scores_normalized = scores.log_softmax(dim=-1)
sorted_logits, sorted_indices = torch.sort(scores_normalized, descending=True)
min_thresh = sorted_logits[..., min_tokens_to_keep-1]
probs_max = torch.max(scores_normalized, dim=-1).values
probs_thresh = probs_max + np.log(relative_top)
probs_thresh = torch.min(min_thresh, probs_thresh)
probs_thresh = probs_thresh.unsqueeze(-1)
return scores_normalized < probs_thresh
def lm_score(self, input_text1, input_text2, pmi=False, max_new_tokens=256, top_p=0.95, top_k=0, temperature=0.8, mature_layer=None, premature_layer=None, candidate_premature_layers=[], mode='baseline', verbose=True, remove_stop_words=False, relative_top=0.1, relative_top_value=-1000.0, post_softmax=True, **kwargs):
with torch.no_grad():
input_text = input_text1 + input_text2
input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.device)
prefix_ids = self.tokenizer(input_text1, return_tensors="pt").input_ids.to(self.device)
continue_ids = input_ids[0, prefix_ids.shape[-1]:]
if mode == 'baseline':
outputs = self.model(input_ids)[0].squeeze(0)
outputs = outputs.log_softmax(-1) # logits to log probs
# skip tokens in the prompt -- we only care about the answer
outputs = outputs[prefix_ids.shape[-1] - 1: -1, :]
# get logprobs for each token in the answer
log_probs = outputs[range(outputs.shape[0]), continue_ids].sum().item()
elif mode == 'dola-static':
dict_outputs, outputs = self.model(
input_ids=input_ids,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
early_exit_layers=[premature_layer, mature_layer],
)
assert premature_layer is not None
base_logits = dict_outputs[premature_layer][0, prefix_ids.shape[-1] - 1: -1, :]
final_logits = dict_outputs[mature_layer][0, prefix_ids.shape[-1] - 1: -1, :]
final_logits = final_logits.log_softmax(dim=-1)
base_logits = base_logits.log_softmax(dim=-1)
diff_logits = final_logits - base_logits
if post_softmax:
diff_logits = diff_logits.log_softmax(dim=-1)
if relative_top > 0.0:
relative_top_mask = self.get_relative_top_filter(final_logits, relative_top)
diff_logits = torch.where(relative_top_mask, relative_top_value, diff_logits)
log_probs = diff_logits[range(diff_logits.shape[0]), continue_ids].sum().item()
elif mode == 'dola':
print('DOLA DOLA DOLA')
premature_layer_dist = {l:0 for l in candidate_premature_layers}
picked_logits = []
result_dict = {}
premature_layers = []
dict_outputs, outputs = self.model(
input_ids=input_ids,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
early_exit_layers=candidate_premature_layers + [mature_layer],
)
for seq_i in range(prefix_ids.shape[-1] - 1, input_ids.shape[-1] - 1):
# Pick the less like layer to contrast with
# 1. Stacking all premature_layers into a new dimension
stacked_premature_layers = torch.stack([dict_outputs[i][:, seq_i, :] for i in candidate_premature_layers], dim=0)
# 2. Calculate the softmax values for mature_layer and all premature_layers
softmax_mature_layer = F.softmax(dict_outputs[mature_layer][:, seq_i, :], dim=-1) # shape: (batch_size, num_features)
softmax_premature_layers = F.softmax(stacked_premature_layers, dim=-1) # shape: (num_premature_layers, batch_size, num_features)
# 3. Calculate M, the average distribution
M = 0.5 * (softmax_mature_layer[None, :, :] + softmax_premature_layers) # shape: (num_premature_layers, batch_size, num_features)
# 4. Calculate log-softmax for the KL divergence
log_softmax_mature_layer = F.log_softmax(dict_outputs[mature_layer][:, seq_i, :], dim=-1) # shape: (batch_size, num_features)
log_softmax_premature_layers = F.log_softmax(stacked_premature_layers, dim=-1) # shape: (num_premature_layers, batch_size, num_features)
# 5. Calculate the KL divergences and then the JS divergences
kl1 = F.kl_div(log_softmax_mature_layer[None, :, :], M, reduction='none').mean(-1) # shape: (num_premature_layers, batch_size)
kl2 = F.kl_div(log_softmax_premature_layers, M, reduction='none').mean(-1) # shape: (num_premature_layers, batch_size)
js_divs = 0.5 * (kl1 + kl2) # shape: (num_premature_layers, batch_size)
# 6. Reduce the batchmean
js_divs = js_divs.mean(-1) # shape: (num_premature_layers,)
premature_layer = candidate_premature_layers[int(js_divs.argmax().cpu().item())]
premature_layer_dist[premature_layer] += 1
premature_layers.append(premature_layer)
base_logits = torch.zeros_like(dict_outputs[mature_layer][0, prefix_ids.shape[-1] - 1:-1])
for i, l in enumerate(premature_layers):
base_logits[i] = dict_outputs[l][0, prefix_ids.shape[-1] - 1 + i]
final_logits = dict_outputs[mature_layer][0, prefix_ids.shape[-1] - 1:-1]
final_logits = final_logits.log_softmax(dim=-1)
base_logits = base_logits.log_softmax(dim=-1)
diff_logits = final_logits - base_logits
if post_softmax:
diff_logits = diff_logits.log_softmax(dim=-1)
if relative_top > 0.0:
relative_top_mask = self.get_relative_top_filter(final_logits, relative_top)
diff_logits = torch.where(relative_top_mask, relative_top_value, diff_logits)
log_probs = diff_logits[range(diff_logits.shape[0]), continue_ids].sum().item()
# print(log_probs)
return log_probs, (premature_layer_dist if mode == 'dola' else None)