-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnncneuralprogram.cc
217 lines (198 loc) · 4.68 KB
/
nncneuralprogram.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# include <nncneuralprogram.h>
# include <math.h>
# include <QFile>
# include <QTextStream>
NNCNeuralProgram::NNCNeuralProgram(int Dimension,QString TrainFile,QString TestFile):
NeuralProgram(Dimension)
{
isvalidation=0;
char cfile1[1024],cfile2[1024];
strcpy(cfile1,TrainFile.toStdString().c_str());
strcpy(cfile2,TestFile.toStdString().c_str());
if(TrainFile!=NULL)
{
FILE *fp=fopen(cfile1,"r");
if(!fp) exit(EXIT_FAILURE);
int d;
fscanf(fp,"%d",&dimension);
xtemp=new double[dimension];
int tcount;
fscanf(fp,"%d",&tcount);
if(tcount<=0) {fclose(fp); return ;}
train_xpoint.resize(tcount);
train_ypoint.resize(tcount);
xmax.resize(dimension);
xmin.resize(dimension);
for(int i=0;i<tcount;i++)
{
train_xpoint[i].resize(dimension);
for(int j=0;j<dimension;j++)
{
fscanf(fp,"%lf",&train_xpoint[i][j]);
if(i==0 || train_xpoint[i][j]>xmax[j]) xmax[j]=train_xpoint[i][j];
if(i==0 || train_xpoint[i][j]<xmin[j]) xmin[j]=train_xpoint[i][j];
}
fscanf(fp,"%lf",&train_ypoint[i]);
}
fclose(fp);
}
if(TestFile!="")
{
FILE *fp=fopen(cfile2,"r");
if(!fp) return;
int d;
fscanf(fp,"%d",&d);
if(d!=dimension) {fclose(fp); return ;}
int tcount;
fscanf(fp,"%d",&tcount);
if(tcount<=0) {fclose(fp); return ;}
test_xpoint.resize(tcount);
test_ypoint.resize(tcount);
categ.resize(0);
for(int i=0;i<tcount;i++)
{
test_xpoint[i].resize(dimension);
for(int j=0;j<dimension;j++)
fscanf(fp,"%lf",&test_xpoint[i][j]);
fscanf(fp,"%lf",&test_ypoint[i]);
int found=0;
for(int j=0;j<categ.size();j++)
if(fabs(categ[j]-test_ypoint[i])<1e-7)
{
found=1;
break;
}
if(!found)
{
int s=categ.size();
categ.resize(s+1);
categ[s]=test_ypoint[i];
}
}
fclose(fp);
}
program=new SigProgram(dimension);
setStartSymbol(program->getStartSymbol());
neuralparser=new NeuralParser(dimension);
}
static void mymap(Data x,Data &x1)
{
for(int i=0;i<x.size();i++)
x1[i]=x[i];
}
void NNCNeuralProgram::getDeriv(Data &g)
{
for(int i=0;i<g.size();i++) g[i]=0.0;
Data tempg;
tempg.resize(g.size());
int start=0;
int end=train_ypoint.size();
if(isvalidation) end=4*train_ypoint.size()/5;
for(int i=start;i<end;i++)
{
double v=neuralparser->eval(train_xpoint[i])-train_ypoint[i];
neuralparser->getDeriv(train_xpoint[i],tempg);
for(int j=0;j<g.size();j++) g[j]+=2.0*v*tempg[j];
}
}
double NNCNeuralProgram::getTestError()
{
double value=0.0;
double *xx=new double[dimension];
for(int i=0;i<test_ypoint.size();i++)
{
for(int j=0;j<dimension;j++) xx[j]=test_xpoint[i][j];
if(program!=NULL)
{
double v=neuralparser->eval(xx)-test_ypoint[i];
value=value+v*v;
}
}
delete[] xx;
return value;
}
int NNCNeuralProgram::getTrainSize() const
{
return train_ypoint.size();
}
int NNCNeuralProgram::getTestSize() const
{
return test_ypoint.size();
}
double NNCNeuralProgram::getTrainError()
{
double value=0.0;
Data xx;
xx.resize(dimension);
int start=0;
int end=train_ypoint.size();
if(isvalidation)
{
start=0;
end=4*train_ypoint.size()/5;
}
for(int i=start;i<end;i++)
{
for(int j=0;j<dimension;j++) xtemp[j]=train_xpoint[i][j];
double v=neuralparser->eval(xtemp);
if(program->EvalError() || std::isnan(v) || std::isinf(v))
{
return 1e+8;
}
v=(v-train_ypoint[i]);
value=value+v*v;
}
return value;
}
double NNCNeuralProgram::getClassTestError(vector<int> &genome)
{
double value=0.0;
string str;
if(!getElements(genome,str)) return -1e+8;
program->Parse(str);
double *xx=new double[train_xpoint[0].size()];
for(int i=0;i<test_ypoint.size();i++)
{
for(int j=0;j<test_xpoint[i].size();j++) xx[j]=test_xpoint[i][j];
double v=program->Eval(xx);
if(program->EvalError() || std::isnan(v) || std::isinf(v))
{
value+=1.0;
continue;
}
double minValue=1e+10;
int index=-1;
for(int j=0;j<categ.size();j++)
{
if(fabs(categ[j]-v)<minValue)
{
minValue=fabs(categ[j]-v);
index = j;
}
}
double myclass=categ[index];
value+=fabs(test_ypoint[i]-myclass)>1e-5;
}
delete[] xx;
return value*100.0/test_ypoint.size();
}
void NNCNeuralProgram::printOutput(QString filename)
{
QFile fp(filename);
if(!fp.open(QIODevice::WriteOnly |QIODevice::Text)) return;
QTextStream st(&fp);
double *xx=new double[train_xpoint[0].size()];
for(int i=0;i<test_ypoint.size();i++)
{
for(int j=0;j<dimension;j++) st<<test_xpoint[i][j]<<" ";
for(int j=0;j<test_xpoint[i].size();j++) xx[j]=test_xpoint[i][j];
double v=program->Eval(xx);
st<<test_ypoint[i]<<" "<<v<<endl;
}
delete[] xx;
fp.close();
}
NNCNeuralProgram::~NNCNeuralProgram()
{
delete[] xtemp;
}