Skip to content

Latest commit

 

History

History
120 lines (99 loc) · 3.04 KB

47.permutations-ii.md

File metadata and controls

120 lines (99 loc) · 3.04 KB

题目地址

https://leetcode.com/problems/combination-sum/description/

题目描述

Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:

Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]
Example 2:

Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

思路

这道题目是求集合,并不是求极值,因此动态规划不是特别切合,因此我们需要考虑别的方法。

这种题目其实有一个通用的解法,就是回溯法。 网上也有大神给出了这种回溯法解题的 通用写法,这里的所有的解法使用通用方法解答。 除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。

我们先来看下通用解法的解题思路,我画了一张图:

backtrack

通用写法的具体代码见下方代码区。

关键点解析

  • 回溯法
  • backtrack 解题公式

代码

/*
 * @lc app=leetcode id=47 lang=javascript
 *
 * [47] Permutations II
 *
 * https://leetcode.com/problems/permutations-ii/description/
 *
 * algorithms
 * Medium (39.29%)
 * Total Accepted:    234.1K
 * Total Submissions: 586.2K
 * Testcase Example:  '[1,1,2]'
 *
 * Given a collection of numbers that might contain duplicates, return all
 * possible unique permutations.
 *
 * Example:
 *
 *
 * Input: [1,1,2]
 * Output:
 * [
 * ⁠ [1,1,2],
 * ⁠ [1,2,1],
 * ⁠ [2,1,1]
 * ]
 *
 *
 */
function backtrack(list, nums, tempList, visited) {
  if (tempList.length === nums.length) return list.push([...tempList]);
  for (let i = 0; i < nums.length; i++) {
    // 和46.permutations的区别是这道题的nums是可以重复的
    // 我们需要过滤这种情况
    if (visited[i]) continue; // 不能用tempList.includes(nums[i])了,因为有重复
    // visited[i - 1] 这个判断容易忽略
    if (i > 0 && nums[i] === nums[i - 1] && visited[i - 1]) continue;

    visited[i] = true;
    tempList.push(nums[i]);
    backtrack(list, nums, tempList, visited);
    visited[i] = false;
    tempList.pop();
  }
}
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permuteUnique = function(nums) {
  const list = [];
  backtrack(list, nums.sort((a, b) => a - b), [], []);
  return list;
};

相关题目