Skip to content

Latest commit

 

History

History
200 lines (144 loc) · 6.88 KB

README.md

File metadata and controls

200 lines (144 loc) · 6.88 KB

Please see the real-world test results here.

closedloop_nav_slam

This file provides steps to install and run the closedloop_nav_slam benchmark on both gazebo and real turtlebot in ROS Noetic and Ubuntu 20.04.

Install

  1. Install wstool.

     sudo apt-get install python3-rosdep  python3-wstool  build-essential python3-rosinstall-generator python3-rosinstall python3-pip python-is-python3
     pip install rospkg
    
  2. Install sensor drivers (for real robot testing) and other libs.

     sudo apt install ros-noetic-urg-node                 # hokuyo laser
     sudo apt install ros-noetic-realsense2-camera        # realsense camera
     sudo apt install ros-noetic-realsense2-description   # camera urdf
     sudo apt install ros-noetic-navitation               # navigation stack
     sudo apt install ros-noetic-teb-local-planner        # move_base
     sudo apt install ros-noetic-sparse-bundle-adjustment # slam_toolbox
     sudo apt install ros-noetic-pointcloud-to-laserscan  # 3d pointcloud to 2d laser scan
     sudo apt install ros-noetic-imu-transformer          # imu transfomer
    
  3. Initialize workspace.

     mkdir -p ~/catkin_ws/src
     cd ~/catkin_ws/src
     
     [email protected]:ivalab/task_driven_slam_benchmarking.git
     # For non-ssh user, please use link: https://github.com/ivalab/task_driven_slam_benchmarking.git
    
     cd ~/catkin_ws && wstool init src
    
     wstool merge -t src src/closedloop_nav_slam/turtlebot2.rosinstall
    
     wstool update -t src -j20
     rosdep install --from-paths src -i -y
    
  4. Build Turtlebot2 Nodes.

     cd ~/catkin_ws
     catkin build -j8 -DCMAKE_BUILD_TYPE=Release
    
  5. Build Other ROS Nodes.

     cd ~/catkin_ws
     wstool merge -t src src/closedloop_nav_slam/closedloop_nav_slam.rosinstall
     wstool update -t src -j20
     rosdep install --from-paths src -i -y
     catkin build -j8 -DCMAKE_BUILD_TYPE=Release
    
  6. Build SLAM methods. Please follow the README of each repo to build the SLAM library.

Run Mapping with GPF

Mapping

Run Real World Test

RealWorldTest

Run Gazebo Simulation

!!! Please source ros workspace in each terminal.!!!

source catkin_ws/devel/setup.bash
  1. Set map and robot init pose. The map and robot_init_pose are recorded here.

    1. Set them in the gazebo launch file.

      launch/gazebo/gazebo_turtlebot.launch

    2. Set them in the config file.

      configs/params/config.yaml

  2. Start launch files.

# Start roscore.
roscore

# Start gazebo, default w/o vlp16. To enable gazebo gui add "gui:=true"
roslaunch closedloop_nav_slam gazebo_turtlebot.launch
# Use the following with vlp16.
# roslaunch closedloop_nav_slam gazebo_turtlebot.launch laser_type:=vlp16

# Run onekey testing script.
roscd closedloop_nav_slam
cd scripts/nodes/
python onekey.py
# The results are saved to the directory defined in config.yaml.

# Start rviz.
roscd closedloop_nav_slam
cd launch
rviz -d closedloop_viz.rviz

# Generally, the script ends smoothly after the testing is done.
# If the script fails for any reason and cannot be terminated, please use 
# the kill_onekey_script.sh to shut it down.
cd scripts/nodes/tools/

./kill_onekey_script.sh

Parameters Tuning

  1. The main config file config.yaml. It mainly defines the running parameters, ros topics, env name, slam_methods names, e.t.c.

  2. Navgition parameters nav

  3. SLAM parameters slam

  4. Map files map

  5. Path files path


Extension

Steps to add a new SLAM method

  1. Define a new class named ${SLAM_NAME}Node in slam_module.py. Here is an example of adding amcl:
    class AmclNode(NodeBase):
    def __init__(self, params: Dict):
        # Define the rosnode names when launching amcl, including amcl and other accessory nodes that amcl requires.
        names = ["amcl", "slam_map_server"]
        super().__init__(names, params)

    def compose_start_cmd(self) -> str:
        # Defines the ros command to start amcl.
        return (
            "roslaunch closedloop_nav_slam amcl.launch output_pose_topic:="
            + self._params["et_pose_topic"]
        )
  1. Add the new method to factory class in slam_module.py. It simply maps the slam_method_name to the slam_node class.
def CreateSlamNode(params: Dict) -> NodeBase:
    ...
  1. Add slam parameters in {SLAM_NAME.yaml}. For example:
## amcl
slam_method: "amcl"
mode: "localization"
enable_msf: false
slam_sensor_type: "laser"
source_msg_parent_frame: "base_footprint" # Define the parent frame that aligns with map frame in slam. VSLAM typically is left_camera_frame, 2D laser is base_footprint.
source_msg_child_frame: "gyro_link" # Define the child frame of which the pose is estimated in parent frame. VSLAM typically is left_camera_optical_frame, 2D laser is base_footprint.
loops: 1 # Define the number of loops in a single trial.
need_map_to_odom_tf: false # Whether needs an additional map_to_odom_tf publisher node. Most 2D laser methods in ros publish this tf inside their class. Some do not and need this publisher node.

Steps to Manually Extract/Define Waypoints From A Known Map.

Set the map in launch file map.launch

# First set the proper map file in the launch file.
roslaunch closedloop_nav_slam map.launch

# Start waypoints saver
rosrun closedloop_nav_slam waypoints_saver.py

# Start rviz and select 2D nav goal.
rviz -d launch/closedloop_viz.rviz

# The waypoints will be saved under `scripts/closedloop_nav_slam/ros/` and can later be moved to `configs/path/`

Issue Tracking.

  • How to disable odom_to_base tf from kobuki_gazebo?
cd ${YOUR_CATKIN_WS}/src/kobuki_ros/kobuki_desktop/kobuki_gazebo_plugins/src

# Change line 166 of file gazebo_ros_kobuki_updates.cpp
if (publish_tf_)
# to
if (false && publish_tf_)

# Rebuild.
catkin build -j16

# Run new wheel odometry publisher.
# It subscribes the gazebo odometry and publishes the disturbed (noise) wheel odometry.
rosrun closedloop_nav_slam wheel_odometry_publisher.py