-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
455 lines (382 loc) · 20 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
""" Rude Carnie: Age and Gender Deep Learning with Tensorflow found at
https://github.com/dpressel/rude-carnie
"""
# ==============================================================================
# MIT License
#
# Modifications copyright (c) 2018 Image & Vision Computing Lab, Institute of Information Science, Academia Sinica
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base
import tensorflow.contrib.slim as slim
TOWER_NAME = 'tower'
def select_model(name):
if name.startswith('inception'):
print('selected (fine-tuning) inception model')
return inception_v3
elif name == 'levi_hassner_bn':
print('selected levi hassner batch norm model')
return levi_hassner_bn
elif name == 'levi_hassner':
print('selected levi hassner model')
return levi_hassner
elif name == 'mobilenet_multitask':
print('selected mobilenet multitask model')
return mobilenet_multitask
elif name == 'LMTCNN-1-1':
print('selected dp multitask model')
return dp_multitask
elif name == 'LMTCNN-2-1':
print('selected dp multitask 2 1 model')
return dp_multitask_2_1
def get_checkpoint(checkpoint_path, requested_step=None, basename='checkpoint'):
if requested_step is not None:
model_checkpoint_path = '%s/%s-%s' % (checkpoint_path, basename, requested_step)
if os.path.exists(model_checkpoint_path) is None:
print('No checkpoint file found at [%s]' % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
return ckpt.model_checkpoint_path, global_step
else:
print('No checkpoint file found at [%s]' % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
"is_training": is_training,
"trainable": True,
# Decay for the moving averages.
"decay": 0.9997,
# Epsilon to prevent 0s in variance.
"epsilon": 0.001,
# Collection containing the moving mean and moving variance.
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
weight_decay = 0.00004
stddev = 0.1
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("InceptionV3","InceptionV3",[images]) as scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope("logits"):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding="VALID", scope="pool")
net = tf.nn.dropout(net, pkeep, name='droplast')
net = flatten(net, scope="flatten")
with tf.variable_scope('output') as scope:
weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
"is_training": is_training,
"trainable": True,
# Decay for the moving averages.
"decay": 0.9997,
# Epsilon to prevent 0s in variance.
"epsilon": 0.001,
# Collection containing the moving mean and moving variance.
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("LeviHassnerBN", "LeviHassnerBN", [images]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding='VALID', biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding='SAME', scope='conv2')
pool2 = max_pool2d(conv2, 3, 2, padding='VALID', scope='pool2')
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding='SAME', biases_initializer=tf.constant_initializer(0.), scope='conv3')
pool3 = max_pool2d(conv3, 3, 2, padding='VALID', scope='pool3')
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('output') as scope:
weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("LeviHassner", "LeviHassner", [images]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding='VALID', biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001, beta=0.75, name='norm1')
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding='SAME', scope='conv2')
pool2 = max_pool2d(conv2, 3, 2, padding='VALID', scope='pool2')
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001, beta=0.75, name='norm2')
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1], biases_initializer=tf.constant_initializer(0.), padding='SAME', scope='conv3')
pool3 = max_pool2d(conv3, 3, 2, padding='VALID', scope='pool3')
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('output') as scope:
weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0, stddev=0.01), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[nlabels], dtype=tf.float32), name='biases')
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def mobilenet(inputs, width_multiplier=1, scope=None, is_training=True):
def _depthwise_separable_conv(inputs, num_pwc_filters, width_multiplier,
sc, downsample=False):
# helper function to build the depthwise separable convolution layer.
num_pwc_filters = round(num_pwc_filters*width_multiplier)
_stride = 2 if downsample else 1
# skip pointwise by setting num_outputs = None
depthwise_conv = slim.separable_convolution2d(inputs, num_outputs=None, stride=_stride,
depth_multiplier=1, kernel_size=[3,3], scope=sc+'/depthwise_conv')
bn = slim.batch_norm(depthwise_conv, scope=sc+'/dw_batch_norm')
pointwise_conv = slim.convolution2d(bn, num_pwc_filters, kernel_size=[1, 1], scope=sc+'/pointwise_conv')
bn = slim.batch_norm(pointwise_conv, scope=sc+'/pw_batch_norm')
return bn
with tf.variable_scope(scope) as sc:
end_points_collection = sc.name + '_end_points'
with slim.arg_scope(
[slim.convolution2d, slim.separable_convolution2d],
activation_fn=None, outputs_collections=[end_points_collection]):
with slim.arg_scope([slim.batch_norm],
is_training=is_training, activation_fn=tf.nn.relu):
net = slim.convolution2d(inputs, round(32*width_multiplier), [3, 3], stride=2, padding='SAME', scope='conv_1')
net = slim.batch_norm(net, scope='conv_1/batch_norm')
net = _depthwise_separable_conv(net, 64, width_multiplier, sc='conv_ds_2')
net = _depthwise_separable_conv(net, 128, width_multiplier, downsample=True, sc='conv_ds_3')
net = _depthwise_separable_conv(net, 128, width_multiplier, sc='conv_ds_4')
net = _depthwise_separable_conv(net, 256, width_multiplier, downsample=True, sc='conv_ds_5')
net = _depthwise_separable_conv(net, 256, width_multiplier, sc='conv_ds_6')
net = _depthwise_separable_conv(net, 512, width_multiplier, downsample=True, sc='conv_ds_7')
net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_8')
net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_9')
net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_10')
net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_11')
net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_12')
net = _depthwise_separable_conv(net, 1024, width_multiplier, downsample=True, sc='conv_ds_13')
net = _depthwise_separable_conv(net, 1024, width_multiplier, sc='conv_ds_14')
net = slim.avg_pool2d(net, [7, 7], scope='avg_pool_15')
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
end_points['squeeze'] = net
return net, end_points
def mobilenet_multitask(nlabels1, images1, nlabels2, images2, pkeep, is_training):
batch_norm_params = {
"is_training": is_training,
"trainable": True,
# decay for the moving averages.
"decay": 0.9997,
# epsilon to prevent 0s in variance.
"epsilon": 0.001,
# collection containing the moving mean and moving variance.
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
weight_decay = 0.00004
stddev = 0.1
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("MobileNetmultitaskls ", "MobileNetmultitask", [images1]) as scope:
with slim.arg_scope(
[slim.convolution2d, slim.separable_convolution2d],
weights_initializer=slim.initializers.xavier_initializer(),
biases_initializer=slim.init_ops.zeros_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
trainable=True):
net, end_points = mobilenet(images1, width_multiplier=1, scope=scope, is_training=is_training)
with tf.variable_scope('ageoutput') as scope:
ageweights = tf.Variable(tf.truncated_normal([1024, nlabels1], mean=0.0, stddev=0.01), name='ageweights')
agebiases = tf.Variable(tf.constant(0.0, shape=[nlabels1], dtype=tf.float32), name='agebiases')
ageoutput = tf.add(tf.matmul(net, ageweights), agebiases, name=scope.name)
_activation_summary(ageoutput)
with tf.variable_scope('genderoutput') as scope:
genderweights = tf.Variable(tf.truncated_normal([1024, nlabels2], mean=0.0, stddev=0.01), name='genderweights')
genderbiases = tf.Variable(tf.constant(0.0, shape=[nlabels2], dtype=tf.float32), name='genderbiases')
genderoutput = tf.add(tf.matmul(net, genderweights), genderbiases, name=scope.name)
_activation_summary(genderoutput)
return ageoutput, genderoutput
def dp_multitask(nlabels1, images1, nlabels2, images2, pkeep, is_training):
def _depthwise_separable_conv(inputs, num_pwc_filters, width_multiplier,
sc, downsample=False):
# helper function to build the depthwise separable convolution layer.
num_pwc_filters = round(num_pwc_filters*width_multiplier)
_stride = 2 if downsample else 1
# skip pointwise by setting num_outputs = None
depthwise_conv = slim.separable_convolution2d(inputs, num_outputs=None, stride=_stride,
depth_multiplier=1, kernel_size=[3,3], scope=sc+'/depthwise_conv')
bn = slim.batch_norm(depthwise_conv, scope=sc+'/dw_batch_norm')
pointwise_conv = slim.convolution2d(bn, num_pwc_filters, kernel_size=[1, 1], scope=sc+'/pointwise_conv')
bn = slim.batch_norm(pointwise_conv, scope=sc+'/pw_batch_norm')
return bn
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("multitaskdpcnn", "multitaskdpcnn", [images1]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with slim.arg_scope(
[slim.convolution2d, slim.separable_convolution2d],
weights_initializer=slim.initializers.xavier_initializer(),
biases_initializer=slim.init_ops.zeros_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
trainable=True):
conv1 = convolution2d(images1, 96, [7,7], [4, 4], padding='VALID',
biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name='norm1')
#convdp1 = _depthwise_separable_conv(norm1, 256, 1.0 , downsample=True,sc='convdp1')
convdp1 = _depthwise_separable_conv(norm1, 256, 1 , downsample=False,sc='convdp1')
convdp2 = _depthwise_separable_conv(convdp1, 384, 1 , downsample=True ,sc='convdp2')
pool3 = max_pool2d(convdp2, 3, 2, padding='VALID', scope='pool3')
#flat = tf.reshape(pool3, [-1, 384*3*3], name='reshape')
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('ageoutput') as agescope:
ageweights = tf.Variable(tf.random_normal([512, nlabels1], mean=0.0, stddev=0.01), name='ageweights', trainable=True)
agebiases = tf.Variable(tf.constant(0.0, shape=[nlabels1], dtype=tf.float32), name='agebiases', trainable=True)
ageoutput = tf.add(tf.matmul(drop2, ageweights), agebiases, name=agescope.name)
with tf.variable_scope('genderoutput') as genderscope:
genderweights = tf.Variable(tf.random_normal([512, nlabels2], mean=0.0, stddev=0.01), name='genderweights')
genderbiases = tf.Variable(tf.constant(0.0, shape=[nlabels2], dtype=tf.float32), name='genderbiases')
genderoutput = tf.add(tf.matmul(drop2, genderweights), genderbiases, name=genderscope.name)
return ageoutput, genderoutput
def dp_multitask_2_1(nlabels1, images1, nlabels2, images2, pkeep, is_training):
def _depthwise_separable_conv(inputs, num_pwc_filters, width_multiplier,
sc, downsample=False):
# helper function to build the depthwise separable convolution layer.
num_pwc_filters = round(num_pwc_filters*width_multiplier)
_stride = 2 if downsample else 1
# skip pointwise by setting num_outputs = None
depthwise_conv = slim.separable_convolution2d(inputs, num_outputs=None, stride=_stride,
depth_multiplier=1, kernel_size=[3,3], scope=sc+'/depthwise_conv')
bn = slim.batch_norm(depthwise_conv, scope=sc+'/dw_batch_norm')
pointwise_conv = slim.convolution2d(bn, num_pwc_filters, kernel_size=[1, 1], scope=sc+'/pointwise_conv')
bn = slim.batch_norm(pointwise_conv, scope=sc+'/pw_batch_norm')
return bn
weight_decay = 0.0005
weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope("multitaskdpcnn", "multitaskdpcnn", [images1]) as scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with slim.arg_scope(
[slim.convolution2d, slim.separable_convolution2d],
weights_initializer=slim.initializers.xavier_initializer(),
biases_initializer=slim.init_ops.zeros_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
trainable=True):
conv1 = convolution2d(images1, 96, [7,7], [4, 4], padding='VALID',
biases_initializer=tf.constant_initializer(0.), scope='conv1')
pool1 = max_pool2d(conv1, 3, 2, padding='VALID', scope='pool1')
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name='norm1')
#convdp1 = _depthwise_separable_conv(norm1, 256, 1.0 , downsample=True,sc='convdp1')
convdp1 = _depthwise_separable_conv(norm1, 256, 2 , downsample=False,sc='convdp1')
convdp2 = _depthwise_separable_conv(convdp1, 384, 1 , downsample=True ,sc='convdp2')
pool3 = max_pool2d(convdp2, 3, 2, padding='VALID', scope='pool3')
#flat = tf.reshape(pool3, [-1, 384*3*3], name='reshape')
flat = tf.reshape(pool3, [-1, 384*6*6], name='reshape')
full1 = fully_connected(flat, 512, scope='full1')
drop1 = tf.nn.dropout(full1, pkeep, name='drop1')
full2 = fully_connected(drop1, 512, scope='full2')
drop2 = tf.nn.dropout(full2, pkeep, name='drop2')
with tf.variable_scope('ageoutput') as agescope:
ageweights = tf.Variable(tf.random_normal([512, nlabels1], mean=0.0, stddev=0.01), name='ageweights', trainable=True)
agebiases = tf.Variable(tf.constant(0.0, shape=[nlabels1], dtype=tf.float32), name='agebiases', trainable=True)
ageoutput = tf.add(tf.matmul(drop2, ageweights), agebiases, name=agescope.name)
with tf.variable_scope('genderoutput') as genderscope:
genderweights = tf.Variable(tf.random_normal([512, nlabels2], mean=0.0, stddev=0.01), name='genderweights')
genderbiases = tf.Variable(tf.constant(0.0, shape=[nlabels2], dtype=tf.float32), name='genderbiases')
genderoutput = tf.add(tf.matmul(drop2, genderweights), genderbiases, name=genderscope.name)
return ageoutput, genderoutput