-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterseccion_con_su_union.lean
108 lines (89 loc) · 1.76 KB
/
Interseccion_con_su_union.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
-- Interseccion_con_su_union.lean
-- Intersección con su unión.lean
-- José A. Alonso Jiménez
-- Sevilla, 26 de abril de 2022
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que
-- s ∩ (s ∪ t) = s
-- ----------------------------------------------------------------------
import data.set.basic
import tactic
open set
variable {α : Type}
variables s t : set α
-- 1ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
ext,
split,
{ intro h,
dsimp at h,
exact h.left, },
{ intro xs,
split,
{ exact xs, },
{ left,
exact xs, }},
end
-- 2ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
ext,
split,
{ intro h,
exact h.left, },
{ intro xs,
split,
{ exact xs, },
{ exact or.inl xs, }},
end
-- 3ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
ext,
exact ⟨λ h, h.left,
λ xs, ⟨xs , or.inl xs⟩,⟩,
end
-- 4ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
ext,
exact ⟨and.left,
λ xs, ⟨xs , or.inl xs⟩,⟩,
end
-- 5ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
ext,
split,
{ rintros ⟨xs,-⟩,
exact xs, },
{ intro xs,
use xs,
left,
exact xs, },
end
-- 6ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
begin
apply subset_antisymm,
{ rintros x ⟨xs,-⟩,
exact xs, },
{ intros x xs,
exact ⟨xs, or.inl xs⟩, },
end
-- 7ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
inf_sup_self
-- 8ª demostración
-- ===============
example : s ∩ (s ∪ t) = s :=
by fifknish