-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPropiedad_de_monotonia_de_la_interseccion.lean
106 lines (88 loc) · 1.78 KB
/
Propiedad_de_monotonia_de_la_interseccion.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
-- Propiedad_de_monotonia_de_la_interseccion.lean
-- Propiedad de monotonía de la intersección.
-- José A. Alonso Jiménez
-- Sevilla, 19 de abril de 2022
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si
-- s ⊆ t
-- entonces
-- s ∩ u ⊆ t ∩ u
-- ----------------------------------------------------------------------
import data.set.basic
import tactic
open set
variable {α : Type}
variables s t u : set α
-- 1ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
begin
rw subset_def,
rw inter_def,
rw inter_def,
dsimp,
intros x h1,
cases h1 with xs xu,
split,
{ rw subset_def at h,
apply h,
exact xs, },
{ exact xu, },
end
-- 2ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
begin
rw [subset_def, inter_def, inter_def],
dsimp,
rintros x ⟨xs, xu⟩,
rw subset_def at h,
exact ⟨h x xs, xu⟩,
end
-- 3ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
begin
simp only [subset_def, inter_def, inter_def],
rintros x ⟨xs, xu⟩,
rw subset_def at h,
exact ⟨h _ xs, xu⟩,
end
-- 4ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
begin
intros x xsu,
exact ⟨h xsu.1, xsu.2⟩,
end
-- 5ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
begin
rintros x ⟨xs, xu⟩,
exact ⟨h xs, xu⟩,
end
-- 6ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
-- by library_search
inter_subset_inter_left u h
-- 7ª demostración
-- ===============
example
(h : s ⊆ t)
: s ∩ u ⊆ t ∩ u :=
by tidy