-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathpreprocess.py
198 lines (153 loc) · 6.5 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#! python
# -*- coding: utf-8 -*-
# Author: kun
# @Time: 2019-07-23 14:26
import librosa
import numpy as np
import os
import pyworld
from pprint import pprint
import librosa.display
import time
def load_wavs(wav_dir, sr):
wavs = list()
for file in os.listdir(wav_dir):
file_path = os.path.join(wav_dir, file)
wav, _ = librosa.load(file_path, sr=sr, mono=True)
# wav = wav.astype(np.float64)
wavs.append(wav)
return wavs
def world_decompose(wav, fs, frame_period=5.0):
# Decompose speech signal into f0, spectral envelope and aperiodicity using WORLD
wav = wav.astype(np.float64)
f0, timeaxis = pyworld.harvest(
wav, fs, frame_period=frame_period, f0_floor=71.0, f0_ceil=800.0)
# Finding Spectogram
sp = pyworld.cheaptrick(wav, f0, timeaxis, fs)
# Finding aperiodicity
ap = pyworld.d4c(wav, f0, timeaxis, fs)
# Use this in Ipython to see plot
# librosa.display.specshow(np.log(sp).T,
# sr=fs,
# hop_length=int(0.001 * fs * frame_period),
# x_axis="time",
# y_axis="linear",
# cmap="magma")
# colorbar()
return f0, timeaxis, sp, ap
def world_encode_spectral_envelop(sp, fs, dim=24):
# Get Mel-Cepstral coefficients (MCEPs)
# sp = sp.astype(np.float64)
coded_sp = pyworld.code_spectral_envelope(sp, fs, dim)
return coded_sp
def world_encode_data(wave, fs, frame_period=5.0, coded_dim=24):
f0s = list()
timeaxes = list()
sps = list()
aps = list()
coded_sps = list()
for wav in wave:
f0, timeaxis, sp, ap = world_decompose(wav=wav,
fs=fs,
frame_period=frame_period)
coded_sp = world_encode_spectral_envelop(sp=sp, fs=fs, dim=coded_dim)
f0s.append(f0)
timeaxes.append(timeaxis)
sps.append(sp)
aps.append(ap)
coded_sps.append(coded_sp)
return f0s, timeaxes, sps, aps, coded_sps
def logf0_statistics(f0s):
# Note: np.ma.log() calculating log on masked array (for incomplete or invalid entries in array)
log_f0s_concatenated = np.ma.log(np.concatenate(f0s))
log_f0s_mean = log_f0s_concatenated.mean()
log_f0s_std = log_f0s_concatenated.std()
return log_f0s_mean, log_f0s_std
def transpose_in_list(lst):
transposed_lst = list()
for array in lst:
transposed_lst.append(array.T)
return transposed_lst
def coded_sps_normalization_fit_transform(coded_sps):
coded_sps_concatenated = np.concatenate(coded_sps, axis=1)
coded_sps_mean = np.mean(coded_sps_concatenated, axis=1, keepdims=True)
coded_sps_std = np.std(coded_sps_concatenated, axis=1, keepdims=True)
coded_sps_normalized = list()
for coded_sp in coded_sps:
coded_sps_normalized.append(
(coded_sp - coded_sps_mean) / coded_sps_std)
return coded_sps_normalized, coded_sps_mean, coded_sps_std
def wav_padding(wav, sr, frame_period, multiple=4):
assert wav.ndim == 1
num_frames = len(wav)
num_frames_padded = int((np.ceil((np.floor(num_frames / (sr * frame_period / 1000)) +
1) / multiple + 1) * multiple - 1) * (sr * frame_period / 1000))
num_frames_diff = num_frames_padded - num_frames
num_pad_left = num_frames_diff // 2
num_pad_right = num_frames_diff - num_pad_left
wav_padded = np.pad(wav, (num_pad_left, num_pad_right),
'constant', constant_values=0)
return wav_padded
def pitch_conversion(f0, mean_log_src, std_log_src, mean_log_target, std_log_target):
# Logarithm Gaussian Normalization for Pitch Conversions
f0_converted = np.exp((np.log(f0) - mean_log_src) /
std_log_src * std_log_target + mean_log_target)
return f0_converted
def world_decode_spectral_envelop(coded_sp, fs):
fftlen = pyworld.get_cheaptrick_fft_size(fs)
decoded_sp = pyworld.decode_spectral_envelope(coded_sp, fs, fftlen)
return decoded_sp
def world_speech_synthesis(f0, decoded_sp, ap, fs, frame_period):
wav = pyworld.synthesize(f0, decoded_sp, ap, fs, frame_period)
wav = wav.astype(np.float32)
return wav
def sample_train_data(dataset_A, dataset_B, n_frames=128):
# Created Pytorch custom dataset instead
num_samples = min(len(dataset_A), len(dataset_B))
train_data_A_idx = np.arange(len(dataset_A))
train_data_B_idx = np.arange(len(dataset_B))
np.random.shuffle(train_data_A_idx)
np.random.shuffle(train_data_B_idx)
train_data_A_idx_subset = train_data_A_idx[:num_samples]
train_data_B_idx_subset = train_data_B_idx[:num_samples]
train_data_A = list()
train_data_B = list()
for idx_A, idx_B in zip(train_data_A_idx_subset, train_data_B_idx_subset):
data_A = dataset_A[idx_A]
frames_A_total = data_A.shape[1]
assert frames_A_total >= n_frames
start_A = np.random.randint(frames_A_total - n_frames + 1)
end_A = start_A + n_frames
train_data_A.append(data_A[:, start_A:end_A])
data_B = dataset_B[idx_B]
frames_B_total = data_B.shape[1]
assert frames_B_total >= n_frames
start_B = np.random.randint(frames_B_total - n_frames + 1)
end_B = start_B + n_frames
train_data_B.append(data_B[:, start_B:end_B])
train_data_A = np.array(train_data_A)
train_data_B = np.array(train_data_B)
return train_data_A, train_data_B
if __name__ == '__main__':
start_time = time.time()
wavs = load_wavs("../data/vcc2016_training/SF1/", 16000)
# pprint(wavs)
f0, timeaxis, sp, ap = world_decompose(wavs[0], 16000, 5.0)
print(f0.shape, timeaxis.shape, sp.shape, ap.shape)
coded_sp = world_encode_spectral_envelop(sp, 16000, 24)
print(coded_sp.shape)
f0s, timeaxes, sps, aps, coded_sps = world_encode_data(wavs, 16000, 5, 24)
# print(f0s)
log_f0_mean, log_f0_std = logf0_statistics(f0s)
# print(log_f0_mean)
coded_sps_transposed = transpose_in_list(lst=coded_sps)
# print(coded_sps_transposed)
coded_sps_norm, coded_sps_mean, coded_sps_std = coded_sps_normalization_fit_transform(
coded_sps=coded_sps_transposed)
print(
"Total time for preprcessing-> {:.4f}".format(time.time() - start_time))
print(len(coded_sps_norm), coded_sps_norm[0].shape)
temp_A = np.random.randn(162, 24, 550)
temp_B = np.random.randn(158, 24, 550)
a, b = sample_train_data(temp_A, temp_B)
print(a.shape, b.shape)