forked from yxbian23/aLLM4TS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_LLM4TS.py
200 lines (178 loc) · 11 KB
/
run_LLM4TS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import os
import torch.distributed as dist
import torch
from exp.exp_LLM4TS import Exp_Main
from exp.exp_imputation import Exp_Imputation
from exp.exp_ad import Exp_Anomaly_Detection
from exp.exp_sf import Exp_Short_Term_Forecast
from exp.exp_classification import Exp_Classification
import random
import numpy as np
parser = argparse.ArgumentParser(description='Time Series Forecasting')
parser.add_argument('--random_seed', type=int, default=42, help='random seed')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer]')
parser.add_argument('--task_name', type=str, required=False, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--percent', type=int, default=100)
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
# aLLMTS
parser.add_argument('--is_llm', type=int, default=0, help='whether to use llm')
parser.add_argument('--pretrain', type=int, default=1, help='whether to use pretrained llm')
parser.add_argument('--freeze', type=int, default=1, help='whether to freeze specific part of the llm')
parser.add_argument('--llm_layers', type=int, default=1, help='the number of llm layers we use')
parser.add_argument('--mask_pt', type=int, default=0, help='mask pratrain ratio')
parser.add_argument('--llm', type=str, default='./HF_MODELS/gpt2', help='the llm checkpoint')
parser.add_argument('--attn_dropout', type=float, default=0, help='')
parser.add_argument('--proj_dropout', type=float, default=0, help='')
parser.add_argument('--res_attention', action='store_true', default=False, help='')
# sft
parser.add_argument('--sft', type=int, default=0, help='whether sft')
parser.add_argument('--sft_layers', type=str, default='null', help='the layers in llm needed to be trained')
parser.add_argument('--history_len', type=int, default=0, help='look-back window length')
parser.add_argument('--fft', type=int, default=0, help='fft')
parser.add_argument('--rand_init', type=int, default=0, help='rand_init')
# pt
parser.add_argument('--c_pt', type=int, default=0, help='whether continue pretrain')
parser.add_argument('--pt_layers', type=str, default='null', help='the layers in llm needed to be trained')
parser.add_argument('--pt_data', type=str, default='null', help='the dataset used in pretrain, use _ to separate')
parser.add_argument('--pt_sft', type=int, default=0, help='whether continue pretrain')
parser.add_argument('--pt_sft_base_dir', type=str, default='null', help='the base model dir for pt_sft')
parser.add_argument('--pt_sft_model', type=str, default='null', help='the base model for pt_sft')
# forecasting task
parser.add_argument('--seq_len', type=int, default=720, help='input sequence length')
parser.add_argument('--label_len', type=int, default=0, help='start token length')
parser.add_argument('--pred_len', type=int, default=720, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--revin', type=int, default=1, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
parser.add_argument('--individual', type=int, default=0, help='individual head; True 1 False 0')
parser.add_argument('--notrans', action='store_true', default=False, help='stop using transformer')
# Formers
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=8, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# optimization
parser.add_argument('--num_workers', type=int, default=4, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=128, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=100, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type3', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='mps', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
if __name__ == '__main__':
args = parser.parse_args()
# random seed
fix_seed = args.random_seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
torch.mps.manual_seed(fix_seed)
np.random.seed(fix_seed)
if (torch.backends.mps.is_available()):
device = torch.device("mps")
args.device = torch.device("mps")
args.use_gpu = True
if args.task_name == 'long_term_forecast':
Exp = Exp_Main
elif args.task_name == 'short_term_forecast':
Exp = Exp_Short_Term_Forecast
elif args.task_name == 'imputation':
Exp = Exp_Imputation
elif args.task_name == 'anomaly_detection':
Exp = Exp_Anomaly_Detection
elif args.task_name == 'classification':
Exp = Exp_Classification
else:
Exp = Exp_Main
if args.is_training:
for ii in range(args.itr):
setting = '{}_sl{}_pl{}_llml{}_lr{}_bs{}_percent{}_{}_{}'.format(
args.model_id,
args.seq_len,
args.pred_len,
args.llm_layers,
args.learning_rate,
args.batch_size,
args.percent,
args.des,
ii,
)
exp = Exp(args)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
if args.use_multi_gpu and args.use_gpu and args.local_rank != 0:
pass
else:
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.mps.empty_cache()
else:
ii = 0
setting = '{}_sl{}_pl{}_llml{}_lr{}_bs{}_percent{}_{}_{}'.format(
args.model_id,
args.seq_len,
args.pred_len,
args.llm_layers,
args.learning_rate,
args.batch_size,
args.percent,
args.des,
ii,
)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.mps.empty_cache()