forked from jack-willturner/deep-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune.py
141 lines (109 loc) · 4.05 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import os
import argparse
import random
import numpy as np
from models import get_model
from pruners import get_pruner
from utils import *
from tqdm import tqdm
################################################################## ARGUMENT PARSING
parser = argparse.ArgumentParser(description="PyTorch CIFAR10 pruning")
parser.add_argument(
"--model",
default="resnet18",
help="resnet9, resnet18, resnet34, resnet50, wrn_40_2, wrn_16_2, wrn_40_1",
)
parser.add_argument("--data_loc", default="/disk/scratch/datasets/cifar", type=str)
parser.add_argument(
"--checkpoint", default=None, type=str, help="Pretrained model to start from"
)
parser.add_argument(
"--prune_checkpoint", default=None, type=str, help="Where to save pruned models"
)
parser.add_argument("--n_gpus", default=0, type=int, help="Number of GPUs to use")
parser.add_argument(
"--save_every",
default=5,
type=int,
help="How often to save checkpoints in number of prunes (e.g. 10 = every 10 prunes)",
)
parser.add_argument("--seed", default=1, type=int)
parser.add_argument("--cutout", action="store_true")
### pruning specific args
parser.add_argument("--pruner", default="L1Pruner", type=str)
parser.add_argument(
"--pruning_type",
default="unstructured",
type=str,
help="structured or unstructured",
)
parser.add_argument(
"--prune_iters",
default=100,
help="how many times to repeat the prune->finetune process",
)
parser.add_argument(
"--target_prune_rate",
default=99,
type=int,
help="Percentage of parameters to prune",
)
parser.add_argument("--finetune_steps", default=100)
parser.add_argument("--lr", default=0.001)
parser.add_argument("--weight_decay", default=0.0005, type=float)
args = parser.parse_args()
################################################################## REPRODUCIBILITY
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
################################################################## MODEL LOADING
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
select_devices(num_gpus_to_use=args.n_gpus)
error_history = []
model = get_model(args.model)
if args.checkpoint is None:
args.checkpoint = args.model
args.checkpoint = args.checkpoint + "_" + str(args.seed)
model, sd = load_model(model, args.checkpoint)
if args.prune_checkpoint is None:
args.prune_checkpoint = args.checkpoint + "_l1_"
if torch.cuda.is_available():
model = model.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to(device)
################################################################## PRUNER
pruner = get_pruner(args.pruner, args.pruning_type)
################################################################## TRAINING HYPERPARAMETERS
trainloader, testloader = get_cifar_loaders(args.data_loc, cutout=args.cutout)
optimizer = optim.SGD(
[w for name, w in model.named_parameters() if not "mask" in name],
lr=args.lr,
momentum=0.9,
weight_decay=args.weight_decay,
)
criterion = nn.CrossEntropyLoss()
# set the learning rate to be final LR
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, 200, eta_min=1e-10)
for epoch in range(sd["epoch"]):
scheduler.step()
for group in optimizer.param_groups:
group["lr"] = scheduler.get_lr()[0]
################################################################## ACTUAL PRUNING/FINETUNING
prune_rates = np.linspace(0, args.target_prune_rate, args.prune_iters)
for prune_rate in tqdm(prune_rates):
pruner.prune(model, prune_rate)
if prune_rate % args.save_every == 0:
checkpoint = args.prune_checkpoint + str(prune_rate)
else:
checkpoint = None # don't bother saving anything
finetune(model, trainloader, criterion, optimizer, args.finetune_steps)
if checkpoint:
validate(model, prune_rate, testloader, criterion, checkpoint=checkpoint)