-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClimateJuste.py
73 lines (58 loc) · 2.06 KB
/
ClimateJuste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu May 25 14:26:06 2017
@author: clairelasserre
"""
import xlrd
from time import time
import numpy as np
from scipy import ndimage
from matplotlib import pyplot as plt
from sklearn import manifold, datasets
pull=[]
wb1 = xlrd.open_workbook('climate.xls')
sh1 = wb1.sheet_by_index(0)
X=[]
for a in range(2,sh1.nrows):
l=[]
l.append(float(sh1.cell(a,6).value) )
l.append(float(sh1.cell(a,19).value) )
X.append(l)
#si on veut travailler sur un plus petit jeu de données
X2 = []
for i in range (len(X)):
if (i%4==0):
X2.append(X[i])
"""ETAPE 1 : volonté de travailler avec un 2d features, sensitivity - ability to prepare"""
"""COMPARER LES DIFFERENTES METHODES AGGLOMERATIVES"""
#----------------------------------------------------------------------
# Visualize the clustering
def plot_clustering(X_red, X, labels, title=None):
x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X_red = (X_red - x_min) / (x_max - x_min)
plt.figure(figsize=(6, 4))
for i in range(X_red.shape[0]):
plt.text(X_red[i, 0], X_red[i, 1], str(labels[i]),
color=plt.cm.spectral(labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
if title is not None:
plt.title(title, size=17)
plt.axis('off')
plt.tight_layout()
#----------------------------------------------------------------------
# 2D embedding of the digits dataset
def MethodesAgglomerativeClustering(X):
print("Computing embedding")
X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
print("Done.")
from sklearn.cluster import AgglomerativeClustering
for linkage in ('ward', 'average', 'complete'):
clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)
t0 = time()
clustering.fit(X_red)
print("%s : %.2fs" % (linkage, time() - t0))
plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage)
plt.show()