-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
128 lines (110 loc) · 4.58 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
""" plotting functions """
import numpy as np
import matplotlib.pyplot as plt
def plot_At(A, ci='2sd', times=None, ax=None, skipdiag=False, labels=None,
showticks=True, color=None, fold=False, line=None, cond=None, width=None,
vline=False, zbar=False, pairs=None, **kwargs):
""" plot traces of each entry of dynamics A in square grid of subplots """
if A.ndim == 3:
T, d, _ = A.shape
elif A.ndim == 4:
_, T, d, _ = A.shape
if times is None:
times = np.arange(T)
if ax is None or ax.shape != (d, d):
fig, ax = plt.subplots(d, d, sharex=True, sharey=True, squeeze=True)#False)
else:
fig = ax[0, 0].figure
pair=False
COLOR = color
for i in range(d):
for j in range(d):
if pairs:
for n in range(len(pairs)):
if i==pairs[n][0]:
if j==pairs[n][1]:
pair=True; I=i; J=j
# only print in lower triangle
ii = i
jj = j
if fold and j > i:
jj = i
ii = j
color = 'black'
else:
color = COLOR
# skip and hide subplots on diagonal
if skipdiag and i == j:
ax[i, j].set_visible(True)
continue
# vertical line params for gap duration
if i == j:
ymin = -0
ymax = 1
# continue
else:
ymin = -0.25
ymax = 0.25
if vline:
ax[i,j].vlines(85,ymin,ymax,colors=color,#'lightgray', #VLINES
linestyles='dashed') #gap onset
ax[i,j].vlines(165,ymin,ymax,colors=color,#'lightgray',
linestyles='dashed') #gap offset
if zbar:
if i != j:
ax[i,j].text(1.75,-2.5, round(np.mean(A[:,i,j]),3))
# plot A entry as trace with/without error band
if A.ndim == 3:
if pair:
# print(f'PAIRS={pairs}')
if i==I and j==J: color='k'
else: color=COLOR
pair=False
ax[i, j].plot(times[:-1], A[:-1, i, j], color=color,#**kwargs)
linestyle=line, linewidth=width, **kwargs)
elif A.ndim == 4:
plot_fill(A[:, :-1, i, j], ci=ci, times=times[:-1],
ax=ax[ii, jj], color=color, cond=cond, line=line, **kwargs)
# add labels above first row and to the left of the first column
if labels is not None:
if i == 0 or (skipdiag and (i, j) == (1, 0)):
ax[i, j].set_title(labels[j], fontsize=12)
if j == 0 or (skipdiag and (i, j) == (0, 1)):
ax[i, j].set_ylabel(labels[i], fontsize=12)
# remove x- and y-ticks on subplot
if not showticks:
ax[i, j].set_xticks([])
ax[i, j].set_yticks([])
return fig, ax
def plot_fill(X, times=None, ax=None, ci='sd', color=None, cond=None, line=None, **kwargs):
""" plot mean and error band across first axis of X """
N, T = X.shape
if times is None:
times = np.arange(T)
if ax is None:
fig, ax = plt.subplots(1, 1)
mu = np.mean(X, axis=0)
# define lower and upper band limits based on ci
if ci == 'sd': # standard deviation
sigma = np.std(X, axis=0)
lower, upper = mu - sigma, mu + sigma
# s = float('%.1g' % np.mean(sigma))
# ax.title.set_text(f'std dev = {s}')
elif ci == 'se': # standard error
stderr = np.std(X, axis=0) / np.sqrt(X.shape[0])
lower, upper = mu - stderr, mu + stderr
elif ci == '2sd': # 2 standard deviations
sigma = np.std(X, axis=0)
lower, upper = mu - 2 * sigma, mu + 2 * sigma
elif ci == 'max': # range (min to max)
lower, upper = np.min(X, axis=0), np.max(X, axis=0)
elif type(ci) is float and 0 < ci < 1:
# quantile-based confidence interval
a = 1 - ci
lower, upper = np.quantile(X, [a / 2, 1 - a / 2], axis=0)
else:
raise ValueError("ci must be in ('sd', 'se', '2sd', 'max') "
"or float in (0, 1)")
ax.fill_between(times, lower, upper, color=color, alpha=0.3, lw=0)#c
lines = ax.plot(times, mu, color='cornflowerblue', linestyle=line, **kwargs)#'color'
c = lines[0].get_color()