Skip to content

Latest commit

 

History

History
73 lines (59 loc) · 3 KB

README.md

File metadata and controls

73 lines (59 loc) · 3 KB

YOLOv8 re-implementation for person detection using PyTorch

Installation

conda create -n YOLO python=3.8
conda activate YOLO
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install PyYAML
pip install tqdm

Train

  • Configure your dataset path in main.py for training
  • Run bash main.sh $ --train for training, $ is number of GPUs

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test for testing

Results

Version COCO weights CrowdHuman weights
v8_n model model
v8_s model -
v8_m model -
v8_l model -
v8_x model -
  • the weights are ported from original repo, see reference

Dataset structure

├── Person 
    ├── images
        ├── train2017
            ├── 1111.jpg
            ├── 2222.jpg
        ├── val2017
            ├── 1111.jpg
            ├── 2222.jpg
    ├── labels
        ├── train2017
            ├── 1111.txt
            ├── 2222.txt
        ├── val2017
            ├── 1111.txt
            ├── 2222.txt

Reference