-
Notifications
You must be signed in to change notification settings - Fork 2
/
textseg.py
251 lines (199 loc) · 7.99 KB
/
textseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import cv2
import math
import pytesseract
from PIL import Image
import json
import uuid
import pandas as pd
############ Utility functions ############
def decode(scores, geometry, scoreThresh):
detections = []
confidences = []
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############
assert len(scores.shape) == 4, "Incorrect dimensions of scores"
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry"
assert scores.shape[0] == 1, "Invalid dimensions of scores"
assert geometry.shape[0] == 1, "Invalid dimensions of geometry"
assert scores.shape[1] == 1, "Invalid dimensions of scores"
assert geometry.shape[1] == 5, "Invalid dimensions of geometry"
assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry"
assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry"
height = scores.shape[2]
width = scores.shape[3]
for y in range(0, height):
# Extract data from scores
scoresData = scores[0][0][y]
x0_data = geometry[0][0][y]
x1_data = geometry[0][1][y]
x2_data = geometry[0][2][y]
x3_data = geometry[0][3][y]
anglesData = geometry[0][4][y]
for x in range(0, width):
score = scoresData[x]
# If score is lower than threshold score, move to next x
if(score < scoreThresh):
continue
# Calculate offset
offsetX = x * 4.0
offsetY = y * 4.0
angle = anglesData[x]
# Calculate cos and sin of angle
cosA = math.cos(angle)
sinA = math.sin(angle)
h = x0_data[x] + x2_data[x]
w = x1_data[x] + x3_data[x]
# Calculate offset
offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]])
# Find points for rectangle
p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
center = (0.5*(p1[0]+p3[0]), 0.5*(p1[1]+p3[1]))
detections.append((center, (w,h), -1*angle * 180.0 / math.pi))
confidences.append(float(score))
# Return detections and confidences
return [detections, confidences]
def dilate_return_img(orig,mask, img_name):
content_dict = {}
x_list = []
y_list = []
w_list = []
h_list = []
name_list = []
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
dilate = cv2.dilate(mask, kernel, iterations=10)
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts,bboxes = sort_contours(cnts)
split_img =[]
for c in range(len(cnts)):
name_list.append(img_name+'_'+str(c))
x,y,w,h = cv2.boundingRect(cnts[c])
x,y,w,h =map(int,[x,y,w,h])
cv2.rectangle(orig, (x, y), (x + w, y + h), (36,255,12), 2)
split_img.append(orig[y:y+h, x:x+w])
content_dict[c] = ocr(orig[y:y+h, x:x+w])
x_list.append(x)
w_list.append(w)
y_list.append(y)
h_list.append(h)
df = pd.DataFrame()
# adding id to orig bbox
font = cv2.FONT_HERSHEY_SIMPLEX
org = (x+20, y+20)
fontScale =2
color = (36,255,12)
thickness = 3
# orig = cv2.putText(orig, str(c), org, font,
# fontScale, color, thickness, cv2.LINE_AA)
df['Name'] = name_list
df['x_value'] = x_list
df['w_value'] = w_list
df['y_value'] = y_list
df['h_value'] = h_list
#df.to_csv('seg_diff_csv/'+img_name+'.csv')
return(orig, dilate, content_dict,df, split_img)
def sort_contours(cnts):
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b:b[1][1], reverse=False))
return (cnts, boundingBoxes)
def get_text_seg(frame, image):
img_name = image
confThreshold = 0.8
nmsThreshold = 0.7
inpWidth = 2048
inpHeight = 2048
model = "frozen_east_text_detection.pb"
# Load network
net = cv2.dnn.readNet(model)
net.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU)
print("Using CPU device")
outputLayers = []
outputLayers.append("feature_fusion/Conv_7/Sigmoid")
outputLayers.append("feature_fusion/concat_3")
height_ = frame.shape[0]
width_ = frame.shape[1]
rW = width_ / float(inpWidth)
rH = height_ / float(inpHeight)
mask = np.zeros(frame.shape[:2], np.uint8)
# Create a 4D blob from frame.
blob = cv2.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False)
# Run the model
net.setInput(blob)
output = net.forward(outputLayers)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
# Get scores and geometry
scores = output[0]
geometry = output[1]
[boxes, confidences] = decode(scores, geometry, confThreshold)
# Apply NMS
indices = cv2.dnn.NMSBoxesRotated(boxes, confidences, confThreshold,nmsThreshold)
for i in indices:
# get 4 corners of the rotated rect
vertices = cv2.boxPoints(boxes[i[0]])
# scale the bounding box coordinates based on the respective ratios
x,y=[],[]
for j in range(4):
vertices[j][0] *= rW
vertices[j][1] *= rH
for j in range(4):
p1 = (vertices[j][0], vertices[j][1])
p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1])
x.append(int(vertices[j][0]))
x.append(int(vertices[(j + 1) % 4][0]))
y.append(int(vertices[j][1]))
y.append(int(vertices[(j + 1) % 4][1]))
# cv2.line(frame, p1, p2, (0, 255, 0), 2, cv2.LINE_AA)
# cv2.putText(frame, "{:.3f}".format(confidences[i[0]]), (vertices[0][0], vertices[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1, cv2.LINE_AA)
cv2.rectangle(mask, (min(x),min(y)), (max(x),max(y)), (255, 0, 0),-1)
output_img,dilate, content_dict, df, split_img=dilate_return_img(frame,mask, img_name)
return(output_img,label,dilate, content_dict, df, split_img)
#return(output_img,label,dilate, mask)
def image2text(image):
return pytesseract.image_to_string(image)
def get_text_image(text_data:dict)->np.ndarray:
"""
Input:
-------
data: A dictionary containing the data to be placed in image
Description:
------------
We use cv2 "putext" to add text to image of (2048,2048) size
Output:
--------
text_image: Image containing text as numpy array
"""
font = cv2.FONT_HERSHEY_SIMPLEX
org = (10, 0)
font_scale = 1.2
color = (0, 0, 0)
thickness = 2
text_image = Image.new('RGB',(2048,2048), (255,255,255))
text_image=np.array(text_image)
for k,v in text_data.items():
if(org[1]+80>2000):
org=(1000,0)
org=(org[0],org[1]+80)
if(type(v)==float):
text_image = cv2.putText(text_image,f"{k} :{v:.3f}", org, font, font_scale, color, thickness, cv2.LINE_AA)
else:
v=str(v)
text_image = cv2.putText(text_image,f"{k} :{v}", org, font, font_scale, color, thickness, cv2.LINE_AA)
return(text_image)
def ocr(orig):
# c = count
# image = image_name
text_image= cv2.resize(get_text_image({"text":image2text(orig)}), (512, 512))
text_image_1=image2text(orig)
# with open ('txt_converted/'+image.split('.')[0]+'.txt','a+') as f:
# f.write(text_image1)
overlay_image= cv2.resize(orig, (512, 512))
combined_image = cv2.hconcat([overlay_image, text_image])
# json_converted = json.dumps(dic)
# with open ('txt_converted/'+image+'.json','a+') as f:
# f.write(json_converted)
# f.write(',')
#cv2.imwrite(f"ocr_single_col/{str(uuid.uuid4())}.jpeg",combined_image)
return(text_image_1)