-
Notifications
You must be signed in to change notification settings - Fork 0
/
Large_Article_Summarization.py
162 lines (125 loc) · 3.79 KB
/
Large_Article_Summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
from summarize import *
from utils.sentence_embedding import *
from utils.clustering import *
from models.summarizers import *
from nltk.tokenize import sent_tokenize, word_tokenize
import math
from time import perf_counter
START = False
COMPLETED = False
PLACEHOLDER = "Enter your article"
st.markdown("Extractive Summarization for Large Articles 😊")
article = st.text_input(
label="Welcome, enter your article, press enter, and then Summarize",
value=PLACEHOLDER,
)
model_name = st.sidebar.selectbox(
label="Pick your model of choice:",
options=("BART", "Pegasus", "Distill-BART", "RoBERTa")
)
max_length = st.sidebar.slider(
label="Choose the maximum length of the summary",
min_value=100,
max_value=500,
value=250
)
min_length = st.sidebar.slider(
label="Choose the minimum length of the summary",
min_value=20,
max_value=150,
value=50
)
go = st.button(
label="Summarize",
key=0,
)
reset = st.button(
label="Reset",
key=1,
)
START = go
tmp_out = st.empty()
if reset:
COMPLETED = not reset
tmp_out.empty()
else:
COMPLETED = reset
bar = st.progress(0)
if START and not COMPLETED:
start_time = perf_counter()
with tmp_out.container():
st.write("Loading in models and preparing article...")
summarization_model, summarization_tokenizer = load_summarizer(model_name)
summarizer_token_limit = summarization_tokenizer.model_max_length
if "pegasus" in model_name.lower():
input_toks = sent_tokenize(article)
input_sent_toks = input_toks
input_word_toks = word_tokenize(article)
num_toks = len(input_toks)
else:
input_toks = word_tokenize(article)
input_word_toks = input_toks
input_sent_toks = sent_tokenize(article)
num_toks = len(input_toks)
bar.progress(15)
if num_toks <= summarizer_token_limit:
with tmp_out.container():
st.write("Input token count (",num_toks,") <= token limit (",summarizer_token_limit,"), skipping optimization ...")
pred_summary = summarize_input(article, summarization_model, summarization_tokenizer)
end_time = perf_counter()
time_taken = end_time - start_time
bar.progress(100)
else:
with tmp_out.container():
st.write("Input token count (",num_toks,") > token limit (",summarizer_token_limit,"), optimizing ...")
st.write(f"Going Beyong {model_name} Token limit:", summarizer_token_limit)
input_sent_toks = sent_tokenize(article)
embeddings = make_embeddings(input_sent_toks, mean_pooling)
embeddings = embeddings.numpy()
bar.progress(30)
n_clusters_estimate = math.ceil(num_toks / summarizer_token_limit)
clemb = ClusterEmbeddings(
cluster_estimate=n_clusters_estimate,
cluster_fn="agglo", # much better
embeddings=embeddings,
sentences=np.array(input_sent_toks),
words=np.array(input_word_toks)
)
bar.progress(50)
curr = 50
rem = 90 - curr
sentence_clusters = clemb.get_sentence_clusters()
n = len(sentence_clusters)
summs = ""
for cluster in sentence_clusters:
cluster_summary = summarize_input(
cluster,
summarization_model,
summarization_tokenizer,
max_length=250,
min_length=50,
)
if type(cluster_summary) == list:
cluster_summary = cluster_summary[0]
summs += cluster_summary + " "
inc = rem / n
bar.progress((curr + inc)/100)
bar.progress(90)
pred_summary = summarize_input(
summs,
summarization_model,
summarization_tokenizer,
max_length=max_length,
min_length=min_length,
)
bar.progress(100)
end_time = perf_counter()
time_taken = end_time - start_time
with tmp_out.container():
st.write(f"Took {time_taken} seconds")
st.write(f"Summary: {pred_summary}")
START = False
COMPLETED = True
else:
pass