-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheaplab.py
138 lines (115 loc) · 4.97 KB
/
cheaplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# The MIT License (MIT)
# =====================
#
# Copyright © 2019-2020 Azavea
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the “Software”), to deal in the Software without
# restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import torch
from typing import Optional
class LearnedIndices(torch.nn.Module):
output_channels = 32
def __init__(self, band_count):
super(LearnedIndices, self).__init__()
intermediate_channels1 = 64
kernel_size = 1
padding_size = (kernel_size - 1) // 2
self.conv1 = torch.nn.Conv2d(band_count,
intermediate_channels1,
kernel_size=kernel_size,
padding=padding_size,
bias=False)
self.conv_numerator = torch.nn.Conv2d(intermediate_channels1,
self.output_channels,
kernel_size=1,
padding=0,
bias=False)
self.conv_denominator = torch.nn.Conv2d(intermediate_channels1,
self.output_channels,
kernel_size=1,
padding=0,
bias=True)
self.batch_norm_quotient = torch.nn.BatchNorm2d(self.output_channels)
def forward(self, x):
x = self.conv1(x)
numerator = self.conv_numerator(x)
denomenator = self.conv_denominator(x)
x = numerator / (denomenator + 1e-7)
x = self.batch_norm_quotient(x)
return x
class Nugget(torch.nn.Module):
def __init__(self, kernel_size, in_channels, out_channels):
super(Nugget, self).__init__()
self.conv2d = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=kernel_size)
self.batch_norm = torch.nn.BatchNorm2d(out_channels)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.conv2d(x)
x = self.batch_norm(x)
x = self.relu(x)
return x
class CheapLab(torch.nn.Module):
def __init__(self,
num_channels: int,
preshrink: int = 1,
out_channels: int = 2):
super(CheapLab, self).__init__()
self.preshrink = preshrink
self.indices = LearnedIndices(num_channels)
self.classifier = torch.nn.Sequential(
Nugget(1, self.indices.output_channels + num_channels, 16),
Nugget(1, 16, 8),
Nugget(1, 8, 4),
Nugget(1, 4, out_channels),
)
def forward(self, x: torch.Tensor):
[w, h] = x.shape[-2:]
if self.preshrink != 1:
x = torch.nn.functional.interpolate(
x,
size=[w // self.preshrink, h // self.preshrink],
mode='bilinear',
align_corners=False)
x = torch.cat([self.indices(x), x], axis=1)
x = self.classifier(x)
if self.preshrink != 1:
x = torch.nn.functional.interpolate(x,
size=[w, h],
mode='bilinear',
align_corners=False)
return x
class RvBCELoss(torch.nn.Module):
def __init__(self, weight: Optional[torch.Tensor] = None):
super(RvBCELoss, self).__init__()
self.crit = torch.nn.BCEWithLogitsLoss(weight)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
bg = x[:, 0, :, :]
fg = x[:, 1, :, :]
x = fg - bg
y = (y == 1).type(x.type())
return self.crit(x, y)
def make_cheaplab_model(num_channels, preshrink=1, out_channels=2):
cheaplab = CheapLab(num_channels, preshrink, out_channels)
return cheaplab
def make_bce_loss(weight: Optional[torch.Tensor] = None):
return RvBCELoss(weight)