-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplaying-with-digits.js
41 lines (30 loc) · 1.37 KB
/
playing-with-digits.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// Some numbers have funny properties. For example:
// 89 --> 8¹ + 9² = 89 * 1
// 695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2
// 46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
// Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p
// we want to find a positive integer k, if it exists, such that the sum of the digits of n taken to the successive powers of p is equal to k * n.
// In other words:
// Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k
// If it is the case we will return k, if not return -1.
// Note: n and p will always be given as strictly positive integers.
// digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1
// digPow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k
// digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2
// digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
//solution
function digPow(n, p) {
let arrayFromN = Array.from(String(n), Number);
let x = arrayFromN.length;
let newArray = [];
for (i = p; i < x + p; i++) {
newArray.push(arrayFromN.shift() ** i);
}
const arraySum = newArray.reduce((previousValue, currentValue) => previousValue+currentValue)
if(arraySum%n === 0){
return arraySum/n
}
else{
return -1
}
}