forked from Lewis-Stuart-11/3DGS-to-PC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gauss_render.py
427 lines (342 loc) · 17.8 KB
/
gauss_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
### Based on code from the Torch Splatting Repo ###
### Credit: https://github.com/hbb1/torch-splatting ###
import torch
import copy
from math import tan, floor, ceil
# Constant values for calculating spherical harmonics
C0 = 0.28209479177387814
C1 = 0.4886025119029199
C2 = [
1.0925484305920792,
-1.0925484305920792,
0.31539156525252005,
-1.0925484305920792,
0.5462742152960396
]
C3 = [
-0.5900435899266435,
2.890611442640554,
-0.4570457994644658,
0.3731763325901154,
-0.4570457994644658,
1.445305721320277,
-0.5900435899266435
]
C4 = [
2.5033429417967046,
-1.7701307697799304,
0.9461746957575601,
-0.6690465435572892,
0.10578554691520431,
-0.6690465435572892,
0.47308734787878004,
-1.7701307697799304,
0.6258357354491761,
]
homogeneous = lambda points: torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)
def eval_sh(deg, sh, dirs=None):
"""
Evaluate spherical harmonics at unit directions
using hardcoded SH polynomials.
Works with torch/np/jnp.
... Can be 0 or more batch dimensions.
Args:
deg: int SH deg. Currently, 0-3 supported
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
dirs: jnp.ndarray unit directions [..., 3]
Returns:
[..., C]
"""
assert deg <= 4 and deg >= 0
coeff = (deg + 1) ** 2
assert sh.shape[-1] >= coeff
result = C0 * sh[..., 0]
if deg > 0:
assert dirs is not None
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
result = (result -
C1 * y * sh[..., 1] +
C1 * z * sh[..., 2] -
C1 * x * sh[..., 3])
if deg > 1:
xx, yy, zz = x * x, y * y, z * z
xy, yz, xz = x * y, y * z, x * z
result = (result +
C2[0] * xy * sh[..., 4] +
C2[1] * yz * sh[..., 5] +
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
C2[3] * xz * sh[..., 7] +
C2[4] * (xx - yy) * sh[..., 8])
if deg > 2:
result = (result +
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
C3[1] * xy * z * sh[..., 10] +
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
C3[5] * z * (xx - yy) * sh[..., 14] +
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
if deg > 3:
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
return result
def build_covariance_2d(mean3d: torch.tensor, cov3d: torch.tensor, viewmatrix: torch.tensor,
fov_x: float, fov_y: float, focal_x: float, focal_y: float):
"""
Converts a 3D gaussian, from a mean and covariance matrix, into a 2D covariance matrix for rendering.
Args:
mean3d (torch.tensor): tensor of centres for gaussians
cov3d (torch.tensor): tensor of 3D covariance matrices for gaussians
viewmatrix (torch.tensor): 4x4 view matrix of the camera
fov_x (float), fov_y (float), focal_x (float), focal_y (float): intrinsic camera parameters
returns:
conv2D: tensor of 2D covariance matrices
"""
# The following models the steps outlined by equations 29
# and 31 in "EWA Splatting" (Zwicker et al., 2002).
# Additionally considers aspect / scaling of viewport.
# Transposes used to account for row-/column-major conventions.
tan_fovx = tan(fov_x * 0.5)
tan_fovy = tan(fov_y * 0.5)
t = (mean3d @ viewmatrix[:3,:3]) + viewmatrix[-1:,:3]
# truncate the influences of gaussians far outside the frustum.
tx = (t[..., 0] / t[..., 2]).clip(min=-tan_fovx*1.3, max=tan_fovx*1.3) * t[..., 2]
ty = (t[..., 1] / t[..., 2]).clip(min=-tan_fovy*1.3, max=tan_fovy*1.3) * t[..., 2]
tz = t[..., 2]
# Eq.29 locally affine transform
# perspective transform is not affine so we approximate with first-order taylor expansion
# notice that we multiply by the intrinsic so that the variance is at the sceen space
J = torch.zeros(mean3d.shape[0], 3, 3).to(mean3d)
J[..., 0, 0] = 1 / tz * focal_x
J[..., 0, 2] = -tx / (tz * tz) * focal_x
J[..., 1, 1] = 1 / tz * focal_y
J[..., 1, 2] = -ty / (tz * tz) * focal_y
# J[..., 2, 0] = tx / t.norm(dim=-1) # discard
# J[..., 2, 1] = ty / t.norm(dim=-1) # discard
# J[..., 2, 2] = tz / t.norm(dim=-1) # discard
W = viewmatrix[:3,:3].T # transpose to correct viewmatrix
cov2d = J @ W @ cov3d @ W.T @ J.permute(0,2,1)
# add low pass filter here according to E.q. 32
filter = torch.eye(2,2).to(cov2d) * 0.3
return cov2d[:, :2, :2] + filter[None]
def projection_ndc(points: torch.tensor, viewmatrix: torch.tensor, projmatrix: torch.tensor):
"""
Converts points into ndc and filters points not in camera frame
Args:
points (torch.tensor): points to convert to ndc
viewmatrix (torch.tensor): the view matrix of the current camera
projmatrix (torch.tensor): the projection matrix of the current camera
"""
points_o = homogeneous(points) # object space
points_h = points_o @ viewmatrix @ projmatrix # screen space # RHS
p_w = 1.0 / (points_h[..., -1:] + 0.000001)
p_proj = points_h * p_w
p_view = points_o @ viewmatrix
# Points in the camera frame are in the mask
in_mask = p_view[..., 2] <= -0.000001
return p_proj, p_view, in_mask
@torch.no_grad()
def get_radius(cov2d):
"""
Get the 2D radii of each gaussian
"""
det = cov2d[:, 0, 0] * cov2d[:,1,1] - cov2d[:, 0, 1] * cov2d[:,1,0]
mid = 0.5 * (cov2d[:, 0,0] + cov2d[:,1,1])
lambda1 = mid + torch.sqrt((mid**2-det).clip(min=0.1))
lambda2 = mid - torch.sqrt((mid**2-det).clip(min=0.1))
return 3.0 * torch.sqrt(torch.max(lambda1, lambda2)).ceil()
@torch.no_grad()
def get_rect(pix_coord, radii, width, height):
"""
Calculate render tiles
"""
rect_min = (pix_coord - radii[:,None])
rect_max = (pix_coord + radii[:,None])
rect_min[..., 0] = rect_min[..., 0].clip(0, width - 1.0)
rect_min[..., 1] = rect_min[..., 1].clip(0, height - 1.0)
rect_max[..., 0] = rect_max[..., 0].clip(0, width - 1.0)
rect_max[..., 1] = rect_max[..., 1].clip(0, height - 1.0)
return rect_min, rect_max
class GaussRenderer():
"""
A gaussian splatting renderer
"""
def __init__(self, means3D, opacity, colour, cov3d, white_bkgd=True):
self.white_bkgd = white_bkgd
self.device = means3D.get_device()
# Tensor of the maximum contributions each gaussian made
self.gaussian_max_contribution = torch.zeros(means3D.shape[0], device=self.device)
# Tensor of new gaussian colours calculated for point cloud generation
self.gaussian_colours = torch.zeros((means3D.shape[0], 3), device=self.device, dtype=torch.double)
self.means3D = means3D
self.opacity = opacity
self.cov3d = cov3d
self.colour = colour
def get_colours(self):
"""
Returns the new calculated gaussian colours
"""
return self.gaussian_colours * 255
def get_seen_gaussians(self):
"""
Returns indices of gaussians that have been rendered
"""
return self.gaussian_max_contribution > 0
def get_surface_gaussians(self):
return self.gaussian_max_contribution > 0.4
def render(self, camera, means2D, cov2d, colour, opacity, depths, projection_mask, max_tile_size=60, max_gaussians_per_tile=60000):
"""
Renders an image given a set of gaussians and camera transform
Args:
camera: the camera parameters to render the image
means2D: positions of the gaussians in 2D spacse
cov2D: 2D covariance matrices for gaussians
colour: colours of the gaussians
opacity: opacity of the gaussians
depths: depths of the gaussians
projection_mask: mask that filters gaussians not included in camera frame
Returns:
render_image: the rendered RGB image
"""
with torch.no_grad():
radii = get_radius(cov2d)
rect = get_rect(means2D, radii, width=camera.image_width, height=camera.image_height)
render_colour = torch.ones(*self.pix_coord.shape[:2], 3).to(self.device)
# Stores a list of tiles that need to be processed
tile_queue = [[[0,0], [camera.image_width, camera.image_height]]]
# Loop until the tile queue is empty
while tile_queue != []:
current_tile = tile_queue.pop(0)
# Get the corner pixel of the current tile and the size
start_px = current_tile[0]
tile_size = current_tile[1]
# If the tile size is less than 2 in any dimension then it is erroneous
if tile_size[0] <= 1 or tile_size[1] <= 1:
continue
tile_size[0] = min(tile_size[0], camera.image_width-start_px[1])
tile_size[1] = min(tile_size[1], camera.image_height-start_px[0])
# Calculate if Gaussian is in tile
over_tl = (rect[0][..., 0].clip(min=start_px[1]), rect[0][..., 1].clip(min=start_px[0]))
over_br = (rect[1][..., 0].clip(max=start_px[1]+tile_size[0]-1), rect[1][..., 1].clip(max=start_px[0]+tile_size[1]-1))
tile_mask = (over_br[0] > over_tl[0]) & (over_br[1] > over_tl[1])
# If there are no gaussians in the tile then set as the background colour
if tile_mask.sum() <= 0:
render_colour[start_px[0]: start_px[0]+tile_size[1], start_px[1]: start_px[1]+tile_size[0], :] = 0 if not self.white_bkgd else 1
continue
# If the current tile is larger than the max tile size, or has more gaussians than the maximum per tile,
# then divide into four seperate tiles and add to queue
if tile_mask.sum() > max_gaussians_per_tile or tile_size[0] > max_tile_size or tile_size[1] > max_tile_size:
tile_size[0] = ceil(tile_size[0]/2)
tile_size[1] = ceil(tile_size[1]/2)
tile_queue.append([copy.deepcopy(start_px), copy.deepcopy(tile_size)])
start_px[0] += floor(tile_size[1])
tile_queue.append([copy.deepcopy(start_px), copy.deepcopy(tile_size)])
start_px[0] -= floor(tile_size[1])
start_px[1] += floor(tile_size[0])
tile_queue.append([copy.deepcopy(start_px), copy.deepcopy(tile_size)])
start_px[0] += floor(tile_size[1])
tile_queue.append([copy.deepcopy(start_px), copy.deepcopy(tile_size)])
continue
tile_coord = self.pix_coord[start_px[0]: start_px[0]+tile_size[1], start_px[1]: start_px[1]+tile_size[0]].flatten(0,-2)
# Order gaussians based on the depth (descending away from cam)
sorted_depths, index = torch.sort(depths[tile_mask])
index = torch.flip(index, [0,])
inverse_index = index.argsort(0)
# Filter gaussians to only those in mask and reorder
sorted_means2D = means2D[tile_mask][index]
sorted_cov2d = cov2d[tile_mask][index]
sorted_conic = sorted_cov2d.inverse()
sorted_opacity = opacity[tile_mask][index]
sorted_colour = colour[tile_mask][index]
dx = (tile_coord[:,None,:] - sorted_means2D[None,:])
# Calculate contributions of each gaussian
gauss_weight = torch.exp(-0.5 * (
dx[:, :, 0]**2 * sorted_conic[:, 0, 0]
+ dx[:, :, 1]**2 * sorted_conic[:, 1, 1]
+ dx[:,:,0]*dx[:,:,1] * sorted_conic[:, 0, 1]
+ dx[:,:,0]*dx[:,:,1] * sorted_conic[:, 1, 0]))
# Calculate alpha and transmittance of each gaussian in pixel
alpha = (gauss_weight[..., None] * sorted_opacity[None]).clip(max=0.99)
T = torch.cat([torch.ones_like(alpha[:,:1]), 1-alpha[:,:-1]], dim=1).cumprod(dim=1)
acc_alpha = (alpha * T).sum(dim=1)
tile_colour = (T * alpha * sorted_colour[None]).sum(dim=1) + (1-acc_alpha) * (1 if self.white_bkgd else 0)
render_colour[start_px[0]: start_px[0]+tile_size[1], start_px[1]: start_px[1]+tile_size[0]] = tile_colour.reshape(tile_size[1], tile_size[0], -1)
# Get the current max representations of each gaussian by applying projection and tile mask
combined_mask = torch.zeros_like(self.gaussian_max_contribution, dtype=torch.bool)
combined_mask[projection_mask] = tile_mask
current_gaussian_reps = self.gaussian_max_contribution[combined_mask]
indices_in_mask = combined_mask.nonzero(as_tuple=True)[0]
# Calculate the represntation of each gaussian for the current pixels
# This is the amount it contributed to the pixel colour and is what is used to determine what colour the points of each gaussian should have!
contribution = ((T * alpha)).squeeze(2)[:, inverse_index]
# Get what pixel the gaussian contributed the most and what its biggest contribution value was
biggest_contribution_in_tile = torch.max(contribution, 0)
biggest_contribution_in_tile_vals = biggest_contribution_in_tile[0]
biggest_contribution_in_tile_pixel = biggest_contribution_in_tile[1]
# Filter gaussians that have a new biggest contribution
new_gaussians = biggest_contribution_in_tile_vals > current_gaussian_reps
new_gaussian_mask_indices = new_gaussians.nonzero()
gaussians_to_update = indices_in_mask[new_gaussian_mask_indices]
# Update the colours and maximum contributions
self.gaussian_max_contribution[gaussians_to_update] = biggest_contribution_in_tile_vals[new_gaussians].unsqueeze(1)
self.gaussian_colours[gaussians_to_update] = tile_colour[biggest_contribution_in_tile_pixel[new_gaussians]].unsqueeze(1)
return torch.flip(render_colour, [1,])
def add_img(self, camera, **kwargs):
"""
Renders an image from the given camera and updates the gaussian colours
"""
with torch.no_grad():
# Reset the pixel coordinates to current camera parameters
self.pix_coord = torch.stack(torch.meshgrid(torch.arange(camera.image_width), torch.arange(camera.image_height), indexing='xy'), dim=-1).to(self.device)
# Calculate 2D coveriance matrix
cov2d = build_covariance_2d(
mean3d=self.means3D,
cov3d=self.cov3d,
viewmatrix=camera.world_view_transform,
fov_x=camera.FoVx,
fov_y=camera.FoVy,
focal_x=camera.focal_x,
focal_y=camera.focal_y)
# Project gaussians into 2D and filter gaussians outside of view range
mean_ndc, mean_view, in_mask = projection_ndc(self.means3D,
viewmatrix=camera.world_view_transform,
projmatrix=camera.projection_matrix)
mean_ndc = mean_ndc[in_mask]
mean_view = mean_view[in_mask]
depths = mean_view[:,2]
cov2d = cov2d[in_mask]
opacity = self.opacity[in_mask]
current_colour = self.colour[in_mask]
mean_coord_x = ((mean_ndc[..., 0] + 1) * camera.image_width - 1.0) * 0.5
mean_coord_y = ((mean_ndc[..., 1] + 1) * camera.image_height - 1.0) * 0.5
means2D = torch.stack([mean_coord_x, mean_coord_y], dim=-1)
# Estimate of the maximum gaussians for each tile for the provided amount of memory
estimated_mem_per_gaussian = 175000
max_gaussians_per_tile = int((torch.cuda.mem_get_info()[1] - torch.cuda.memory_allocated(self.device))/estimated_mem_per_gaussian)
# Estimate of the max tile size for the provided amount of memory
max_tile_size = max_gaussians_per_tile//1000
# Attempts to render image with set tile size (for speed). If this fails then the tile size is reduced
while max_tile_size >= 5 and max_gaussians_per_tile > 5000:
try:
return self.render(
camera=camera,
means2D=means2D,
cov2d=cov2d,
colour=current_colour,
opacity=opacity,
depths=depths,
projection_mask=in_mask,
max_tile_size=max_tile_size,
max_gaussians_per_tile=max_gaussians_per_tile
)
except Exception:
max_gaussians_per_tile -= 5000
max_tile_size -= 5
raise Exception("Failed to render image")