-
Notifications
You must be signed in to change notification settings - Fork 12
/
PowersOf2.hpp
212 lines (167 loc) · 5.11 KB
/
PowersOf2.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#ifndef _SNARKFRONT_POWERS_OF_2_HPP_
#define _SNARKFRONT_POWERS_OF_2_HPP_
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <gmp.h>
#include <vector>
#include <snarklib/BigInt.hpp>
#include <snarklib/Field.hpp>
namespace snarkfront {
// look up table for powers of 2 for BigInt/field/group
template <typename T>
class PowersOf2
{
public:
PowersOf2()
: m_lut(1, T::one())
{}
const T& lookUp(const std::size_t index)
{
// protect against huge index from accidental pointer argument
#ifdef USE_ASSERT
assert(index < 1024);
#endif
for (std::size_t i = m_lut.size(); i <= index; ++i) {
// m_lut[i] = 2 * m_lut[i - 1];
m_lut.emplace_back(m_lut.back() + m_lut.back());
}
return m_lut[index];
}
T getNumber(const std::size_t number) {
T accum = T::zero();
auto b = number;
std::size_t i = 0;
while (b) {
if (b & 0x1)
accum = accum + lookUp(i);
b >>= 1;
++i;
}
return accum;
}
T getNumber(const std::vector<int>& bits) {
T accum = T::zero();
for (std::size_t i = 0; i < bits.size(); ++i) {
if (bits[i])
accum = accum + lookUp(i);
}
return accum;
}
private:
std::vector<T> m_lut; // index -> T(2^index)
};
// convert Boolean to one and zero
bool zero_internal(const bool& dummy);
bool one_internal(const bool& dummy);
template <typename T, std::size_t N>
static snarklib::Field<T, N> zero_internal(const snarklib::Field<T, N>& dummy) {
return snarklib::Field<T, N>::zero();
}
template <typename T, std::size_t N>
static snarklib::Field<T, N> one_internal(const snarklib::Field<T, N>& dummy) {
return snarklib::Field<T, N>::one();
}
template <typename T>
T boolTo(const bool a) {
T dummy;
return a ? one_internal(dummy) : zero_internal(dummy);
}
// size of type in bits
std::size_t sizeBits(const bool& dummy);
std::size_t sizeBits(const std::uint8_t& dummy);
std::size_t sizeBits(const std::uint32_t& dummy);
std::size_t sizeBits(const std::uint64_t& dummy);
template <mp_size_t N>
std::size_t sizeBits(const snarklib::BigInt<N>& dummy) {
return snarklib::BigInt<N>::maxBits();
}
template <typename T, std::size_t N>
std::size_t sizeBits(const snarklib::Field<T, N>& dummy) {
return snarklib::Field<T, N>::sizeInBits();
}
// returns number of matching bits starting from most significant bit
template <typename BIT>
int matchMSB(const std::vector<BIT>& a,
const std::vector<BIT>& b)
{
if (a.size() != b.size())
return -1; // a and b are different sizes, no matching bits
for (int i = a.size() - 1; i >= 0; --i) {
if (bool(a[i] != b[i]))
return a.size() - 1 - i; // some bits match
}
return a.size(); // all bits match
}
// convert value to bits
std::vector<int> valueBits(const bool& a);
std::vector<int> valueBits(const std::uint8_t& a);
std::vector<int> valueBits(const std::uint32_t& a);
std::vector<int> valueBits(const std::uint64_t& a);
template <mp_size_t N>
std::vector<int> valueBits(const snarklib::BigInt<N>& a) {
std::vector<int> v;
v.reserve(sizeBits(a));
for (std::size_t i = 0; i < sizeBits(a); ++i) {
v.push_back(a.testBit(i));
}
return v;
}
template <typename T, std::size_t N>
std::vector<int> valueBits(const snarklib::Field<T, N>& a) {
#ifdef USE_ASSERT
assert(1 == a.dimension()); // always true for elliptic curve
// scalar field
#endif
return valueBits(a[0].asBigInt());
}
// convert bits to value
template <typename UINT_N>
std::vector<int> bitsValue(UINT_N& a, const std::vector<int>& b)
{
UINT_N result = 0;
const std::size_t N = std::min(sizeBits(a), b.size());
for (std::size_t i = 0; i < N; ++i) {
result |= (UINT_N(b[i]) << i);
}
a = result;
std::vector<int> v;
for (std::size_t i = N; i < b.size(); ++i) {
v.push_back(b[i]);
}
return v;
}
// count number of set bits
std::size_t countBits(const std::vector<int>& v);
// overflow addition (uint8_t, uint32_t and uint64_t)
template <typename UINT_N>
void addover(UINT_N& a1, UINT_N& a0, const UINT_N& b)
{
// a0 = 2 * a0_half + a0_bit
// b = 2 * b_half + b_bit
const UINT_N
a0_half = a0 >> 1, a0_bit = a0 & 0x1,
b_half = b >> 1, b_bit = b & 0x1;
// a0 + b = 2 * (a0_half + b_half) + (a0_bit + b_bit)
// = 2 * halfsum + a0_bit + b_bit
const UINT_N halfsum = a0_half + b_half;
// (high, low) = a0 + b
UINT_N
high = halfsum >> (sizeBits(high) - 1), // carry bit
low = (halfsum << 1) + a0_bit;
const UINT_N lowOriginal = low;
low += b_bit;
if ((0 == low) && (-1 == lowOriginal)) ++high; // handle carry
// accumulate result
a1 += high;
a0 = low;
}
// overflow multiplication (uint8_t, uint32_t and uint64_t)
#define DEFN_MULOVER(T) void mulover(T& c1, T& c0, const T& a, const T& b);
DEFN_MULOVER(std::uint8_t)
DEFN_MULOVER(std::uint32_t)
DEFN_MULOVER(std::uint64_t)
#undef DEFN_MULOVER
} // namespace snarkfront
#endif