-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathRank1Ops.hpp
257 lines (206 loc) · 6.69 KB
/
Rank1Ops.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#ifndef _SNARKFRONT_RANK_1_OPS_HPP_
#define _SNARKFRONT_RANK_1_OPS_HPP_
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>
#include <snarklib/Rank1DSL.hpp>
#include <snarkfront/PowersOf2.hpp>
#include <snarkfront/TLsingleton.hpp>
namespace snarkfront {
////////////////////////////////////////////////////////////////////////////////
// variable consistency, enforce valid values
//
// constrain rank-1 variable to 0 and 1 values
template <template <typename> class SYS, typename FR>
void rank1_booleanity(SYS<FR>& S,
const snarklib::R1Variable<FR>& x)
{
#ifdef USE_ASSERT
assert(! x.zeroIndex());
#endif
S.addConstraint(x * (FR::one() - x) == FR::zero()); // only roots are 0 and 1
}
template <template <typename> class SYS, typename FR>
void rank1_booleanity(SYS<FR>& S,
const snarklib::R1Term<FR>& x)
{
#ifdef USE_ASSERT
assert(x.isVariable());
#endif
rank1_booleanity(S, x.var());
}
template <template <typename> class SYS, typename FR>
void rank1_booleanity(SYS<FR>& S,
const std::vector<snarklib::R1Term<FR>>& x)
{
for (const auto& a : x)
rank1_booleanity(S, a);
}
// constrain between a scalar in [0, 2^k) and representation as k bits
template <template <typename> class SYS, typename FR>
void rank1_split(SYS<FR>& S,
const snarklib::R1Term<FR>& x,
const std::vector<snarklib::R1Term<FR>>& b)
{
#ifdef USE_ASSERT
assert(x.isVariable());
#endif
snarklib::R1Combination<FR> LC;
LC.reserveTerms(b.size());
for (std::size_t i = 0; i < b.size(); ++i) {
if (! b[i].zeroTerm())
LC.addTerm(
TL<PowersOf2<FR>>::singleton()->lookUp(i) * b[i]);
}
S.addConstraint(LC == x);
}
////////////////////////////////////////////////////////////////////////////////
// operators
//
#define DEFN_R1OP(NAME, XYZ) \
template <typename FR> \
class R1_ ## NAME \
{ \
public: \
typedef FR FieldType; \
static snarklib::R1Constraint<FR> constraint( \
const snarklib::R1Term<FR>& x, \
const snarklib::R1Term<FR>& y, \
const snarklib::R1Term<FR>& z) { \
return XYZ ; \
} \
};
// AND, OR, XOR, SAME, CMPLMNT
DEFN_R1OP(AND, x * y == z)
DEFN_R1OP(OR, x + y - z == x * y)
DEFN_R1OP(XOR, x + y - z == ((FR::one() + FR::one()) * x) * y)
DEFN_R1OP(SAME, x + y + z - FR::one() == ((FR::one() + FR::one()) * x) * y)
DEFN_R1OP(CMPLMNT, x + z == FR::one())
// ADD, SUB, MUL
DEFN_R1OP(ADD, x + y == z)
DEFN_R1OP(SUB, x - y == z)
DEFN_R1OP(MUL, x * y == z)
// INV
DEFN_R1OP(INV, x * z == FR::one())
#undef DEFN_R1OP
////////////////////////////////////////////////////////////////////////////////
// function to apply operators
//
template <template <typename> class SYS, typename R1OP>
void rank1_op(
SYS<typename R1OP::FieldType>& S,
const snarklib::R1Term<typename R1OP::FieldType>& x,
const snarklib::R1Term<typename R1OP::FieldType>& y,
const snarklib::R1Term<typename R1OP::FieldType>& z)
{
S.addConstraint(R1OP::constraint(x, y, z));
}
////////////////////////////////////////////////////////////////////////////////
// bit shift and rotate
//
template <typename FR>
void rank1_shiftleft(std::vector<snarklib::R1Term<FR>>& x,
const std::size_t n)
{
#ifdef USE_ASSERT
assert(! x.empty());
#endif
if (0 == n) return; // do nothing
const auto N = n % x.size();
for (std::size_t i = x.size() - 1; i >= N; --i) {
x[i] = x[i - N];
}
for (std::size_t i = 0; i < N; ++i) {
x[i] = snarklib::R1Term<FR>();
}
}
template <typename FR>
void rank1_shiftright(std::vector<snarklib::R1Term<FR>>& x,
const std::size_t n)
{
#ifdef USE_ASSERT
assert(! x.empty());
#endif
if (0 == n) return; // do nothing
const auto N = n % x.size();
for (std::size_t i = 0; i < x.size() - N; ++i) {
x[i] = x[i + N];
}
for (std::size_t i = x.size() - N; i < x.size(); ++i) {
x[i] = snarklib::R1Term<FR>();
}
}
template <typename FR>
void rank1_rotateleft(std::vector<snarklib::R1Term<FR>>& x,
const std::size_t n)
{
#ifdef USE_ASSERT
assert(! x.empty());
#endif
if (0 == n) return; // do nothing
const auto N = n % x.size();
std::vector<snarklib::R1Term<FR>> v(x.size());
for (std::size_t i = 0; i < x.size(); ++i) {
v[(i + N) % x.size()] = x[i];
}
x = v;
}
template <typename FR>
void rank1_rotateright(std::vector<snarklib::R1Term<FR>>& x,
const std::size_t n)
{
#ifdef USE_ASSERT
assert(! x.empty());
#endif
if (0 == n) return; // do nothing
const auto N = n % x.size();
std::vector<snarklib::R1Term<FR>> v(x.size());
for (std::size_t i = 0; i < x.size(); ++i) {
v[i] = x[(i + N) % x.size()];
}
x = v;
}
////////////////////////////////////////////////////////////////////////////////
// bitwise conversion between unsigned integers and bool
//
template <typename FR>
std::vector<snarklib::R1Term<FR>>
rank1_xword(
const std::vector<snarklib::R1Term<FR>>& x,
const std::size_t returnSize)
{
std::vector<snarklib::R1Term<FR>> v(returnSize, FR::zero());
if (1 == x.size()) {
// source is bool
if (returnSize <= 64) {
// convert bool to 8-bit, 32-bit, or 64-bit word as bitmask
for (std::size_t i = 0; i < returnSize; ++i)
v[i] = x[0];
} else if (128 == returnSize) {
// convert bool to 128-bit as integer value
v[0] = x[0];
} else {
// convert bool to FR::zero() or FR::one()
const auto ONE = valueBits(FR::one());
for (std::size_t i = 0; i < ONE.size(); ++i) {
if (ONE[i]) v[i] = x[0];
}
}
} else {
#ifdef USE_ASSERT
// source and destination are not finite scalar field
assert(sizeBits(FR::zero()) != x.size());
assert(sizeBits(FR::zero()) != returnSize);
#endif
// source is unsigned integer: 8-bit, 32-bit, 64-bit, 128-bit
// if destination type is bool, returnSize is 1 so takes 0th bit
// otherwise, bitwise slices between unsigned integer types
const auto N = std::min(returnSize, x.size());
for (std::size_t i = 0; i < N; ++i)
v[i] = x[i];
}
return v;
}
} // namespace snarkfront
#endif