forked from thohemp/6DRepNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
169 lines (139 loc) · 6.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from model import SixDRepNet
import math
import re
from matplotlib import pyplot as plt
import sys
import os
import argparse
import numpy as np
import cv2
import matplotlib.pyplot as plt
from numpy.lib.function_base import _quantile_unchecked
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.backends.cudnn as cudnn
import torchvision
import torch.nn.functional as F
import datasets
import utils
import matplotlib
matplotlib.use('TkAgg')
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(
description='Head pose estimation using the 6DRepNet.')
parser.add_argument('--gpu',
dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--data_dir',
dest='data_dir', help='Directory path for data.',
default='datasets/AFLW2000', type=str)
parser.add_argument('--filename_list',
dest='filename_list',
help='Path to text file containing relative paths for every example.',
default='datasets/AFLW2000/files.txt', type=str) # datasets/BIWI_noTrack.npz
parser.add_argument('--snapshot',
dest='snapshot', help='Name of model snapshot.',
default='', type=str)
parser.add_argument('--batch_size',
dest='batch_size', help='Batch size.',
default=64, type=int)
parser.add_argument('--show_viz',
dest='show_viz', help='Save images with pose cube.',
default=False, type=bool)
parser.add_argument('--dataset',
dest='dataset', help='Dataset type.',
default='AFLW2000', type=str)
args = parser.parse_args()
return args
def load_filtered_state_dict(model, snapshot):
# By user apaszke from discuss.pytorch.org
model_dict = model.state_dict()
snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
model_dict.update(snapshot)
model.load_state_dict(model_dict)
if __name__ == '__main__':
args = parse_args()
cudnn.enabled = True
gpu = args.gpu_id
snapshot_path = args.snapshot
model = SixDRepNet(backbone_name='RepVGG-B1g2',
backbone_file='',
deploy=True,
pretrained=False)
print('Loading data.')
transformations = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(
224), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
pose_dataset = datasets.getDataset(
args.dataset, args.data_dir, args.filename_list, transformations, train_mode = False)
test_loader = torch.utils.data.DataLoader(
dataset=pose_dataset,
batch_size=args.batch_size,
num_workers=2)
# Load snapshot
saved_state_dict = torch.load(snapshot_path, map_location='cpu')
if 'model_state_dict' in saved_state_dict:
model.load_state_dict(saved_state_dict['model_state_dict'])
else:
model.load_state_dict(saved_state_dict)
model.cuda(gpu)
# Test the Model
model.eval() # Change model to 'eval' mode (BN uses moving mean/var).
total = 0
yaw_error = pitch_error = roll_error = .0
v1_err = v2_err = v3_err = .0
with torch.no_grad():
for i, (images, r_label, cont_labels, name) in enumerate(test_loader):
images = torch.Tensor(images).cuda(gpu)
total += cont_labels.size(0)
# gt matrix
R_gt = r_label
# gt euler
y_gt_deg = cont_labels[:, 0].float()*180/np.pi
p_gt_deg = cont_labels[:, 1].float()*180/np.pi
r_gt_deg = cont_labels[:, 2].float()*180/np.pi
R_pred = model(images)
euler = utils.compute_euler_angles_from_rotation_matrices(
R_pred)*180/np.pi
p_pred_deg = euler[:, 0].cpu()
y_pred_deg = euler[:, 1].cpu()
r_pred_deg = euler[:, 2].cpu()
R_pred = R_pred.cpu()
v1_err += torch.sum(torch.acos(torch.clamp(
torch.sum(R_gt[:, 0] * R_pred[:, 0], 1), -1, 1)) * 180/np.pi)
v2_err += torch.sum(torch.acos(torch.clamp(
torch.sum(R_gt[:, 1] * R_pred[:, 1], 1), -1, 1)) * 180/np.pi)
v3_err += torch.sum(torch.acos(torch.clamp(
torch.sum(R_gt[:, 2] * R_pred[:, 2], 1), -1, 1)) * 180/np.pi)
pitch_error += torch.sum(torch.min(torch.stack((torch.abs(p_gt_deg - p_pred_deg), torch.abs(p_pred_deg + 360 - p_gt_deg), torch.abs(
p_pred_deg - 360 - p_gt_deg), torch.abs(p_pred_deg + 180 - p_gt_deg), torch.abs(p_pred_deg - 180 - p_gt_deg))), 0)[0])
yaw_error += torch.sum(torch.min(torch.stack((torch.abs(y_gt_deg - y_pred_deg), torch.abs(y_pred_deg + 360 - y_gt_deg), torch.abs(
y_pred_deg - 360 - y_gt_deg), torch.abs(y_pred_deg + 180 - y_gt_deg), torch.abs(y_pred_deg - 180 - y_gt_deg))), 0)[0])
roll_error += torch.sum(torch.min(torch.stack((torch.abs(r_gt_deg - r_pred_deg), torch.abs(r_pred_deg + 360 - r_gt_deg), torch.abs(
r_pred_deg - 360 - r_gt_deg), torch.abs(r_pred_deg + 180 - r_gt_deg), torch.abs(r_pred_deg - 180 - r_gt_deg))), 0)[0])
if args.show_viz:
name = name[0]
if args.dataset == 'AFLW2000':
cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
elif args.dataset == 'BIWI':
vis = np.uint8(name)
h,w,c = vis.shape
vis2 = cv2.CreateMat(h, w, cv2.CV_32FC3)
vis0 = cv2.fromarray(vis)
cv2.CvtColor(vis0, vis2, cv2.CV_GRAY2BGR)
cv2_img = cv2.imread(vis2)
utils.draw_axis(cv2_img, y_pred_deg[0], p_pred_deg[0], r_pred_deg[0], tdx=200, tdy=200, size=100)
#utils.plot_pose_cube(cv2_img, y_pred_deg[0], p_pred_deg[0], r_pred_deg[0], size=200)
cv2.imshow("Test", cv2_img)
cv2.waitKey(5)
cv2.imwrite(os.path.join('output/img/',name+'.png'),cv2_img)
print('Yaw: %.4f, Pitch: %.4f, Roll: %.4f, MAE: %.4f' % (
yaw_error / total, pitch_error / total, roll_error / total,
(yaw_error + pitch_error + roll_error) / (total * 3)))
# print('Vec1: %.4f, Vec2: %.4f, Vec3: %.4f, VMAE: %.4f' % (
# v1_err / total, v2_err / total, v3_err / total,
# (v1_err + v2_err + v3_err) / (total * 3)))