forked from Ahmednull/L2CS-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clear_kfold_hydrant_training.py
286 lines (223 loc) · 14.2 KB
/
clear_kfold_hydrant_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import clearml
import os
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader, SubsetRandomSampler
from torch.autograd import Variable
from hydrant_utils import Hydrant, GazeCaptureDifferentRanges, gauss, smooth_labels
from sklearn.model_selection import KFold
def reset_weights(m):
'''
Try resetting model weights to avoid
weight leakage.
'''
for layer in m.children():
if hasattr(layer, 'reset_parameters'):
print(f'Reset trainable parameters of layer = {layer}')
layer.reset_parameters()
train_transformations = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Gaze estimation using Hydrant.')
# ------DATASET ARGS------
parser.add_argument('--train-dir', help='Directory path for training dataset.', required=True)
# ------NETWORK ARCHITECTURE------
parser.add_argument('--architecture', help='Root network architecture', required=True)
# ------BINS ARGUMENTS------
parser.add_argument('--pitch-lower-range', help='Pitch lower range', default=-42, type=int)
parser.add_argument('--pitch-upper-range', help='Pitch upper range', default=42, type=int)
parser.add_argument('--pitch-resolution', help='Bin size in degrees for pitch', default=3, type=int)
parser.add_argument('--yaw-lower-range', help='Yaw lower range', default=-42, type=int)
parser.add_argument('--yaw-upper-range', help='Yaw upper range', default=42, type=int)
parser.add_argument('--yaw-resolution', help='Bin size in degrees for yaw', default=3, type=int)
# ------LOSS ARGUMENTS------
parser.add_argument('--pitch-cls-scale', help='Scaling factor for pitch classification loss', default=1.0, type=float)
parser.add_argument('--pitch-reg-scale', help='Scaling factor for pitch regression loss', default=1.0, type=float)
parser.add_argument('--yaw-cls-scale', help='Scaling factor for yaw classification loss', default=1.0, type=float)
parser.add_argument('--yaw-reg-scale', help='Scaling factor for yaw regression loss', default=1.0, type=float)
# ------LABEL SMOOTHING ARGUMENTS------
parser.add_argument('--label-smoothing', help='Enables label smoothing', action='store_true')
parser.add_argument('--smoothing-sigma', help='Standard deviation for gaussian smoothing', default=0.45, type=float)
parser.add_argument('--smoothing-threshold', help='Threshold for non-zeroing smoothed values', default=1e-3, type=float)
# ------CLEARML ARGUMENTS------
parser.add_argument('--clearml-experiment', help='Name of the experiment', required=True)
parser.add_argument('--clearml-tags', nargs='*', help='tags that will be used by ClearML', required=True)
# ------TRAINING ARGUMENTS------
parser.add_argument('--lr', help='Learning ratio', default=1e-5, type=float)
parser.add_argument('--epochs', help='Number of epochs', default=20, type=int)
parser.add_argument('--batch-size', help='Batch size', default=8, type=int)
parser.add_argument('--k-fold', help='Number of folds', default=5, type=int)
# ------OUTPUT ARGUMENTS------
parser.add_argument('--output-folder', help='Folder where models will be saved', default='')
args = parser.parse_args()
task = clearml.Task.init(project_name="WET", task_name=args.clearml_experiment, tags=args.clearml_tags)
logger = task.get_logger()
# Calculate bins number
if (args.pitch_upper_range - args.pitch_lower_range) % args.pitch_resolution:
raise ValueError("Pitch range must be divisible by pitch resolution")
else:
bin_number_pitch = int((args.pitch_upper_range - args.pitch_lower_range) / args.pitch_resolution)
if (args.yaw_upper_range - args.yaw_lower_range) % args.yaw_resolution:
raise ValueError("yaw range must be divisible by Yaw resolution")
else:
bin_number_yaw = int((args.yaw_upper_range - args.yaw_lower_range) / args.yaw_resolution)
# Define device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Define dataset
train_dataset=GazeCaptureDifferentRanges(os.path.join(args.train_dir, 'annotations.txt'),
args.train_dir,
train_transformations,
False,
args.pitch_lower_range,
args.pitch_upper_range,
args.pitch_resolution,
args.yaw_lower_range,
args.yaw_upper_range,
args.yaw_resolution)
# Set fixed random number seed
torch.manual_seed(42)
# Define KFold cross validator
kfold = KFold(n_splits=args.k_fold, shuffle=True)
# K-fold Cross Validation model evaluation
for fold, (train_ids, test_ids) in enumerate(kfold.split(train_dataset)):
print(f'FOLD {fold}')
print(50*'-')
# Sample elements randomly from a given list of ids, no replacement.
train_subsampler = SubsetRandomSampler(train_ids)
test_subsampler = SubsetRandomSampler(test_ids)
# Define data loaders for training and testing data in this fold
train_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=1,
pin_memory=True,
sampler=train_subsampler)
val_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=1,
pin_memory=True,
sampler= test_subsampler)
# Build model
model = Hydrant(args.architecture, bin_number_yaw, bin_number_pitch)
# TODO: Discuss if the weight should be reset to avoid weight leakage. IMO not necessary
# cause we use pretrained weights
# model.apply(reset_weights)
model.to(device)
# Define losses
classification_loss = nn.CrossEntropyLoss()
regression_loss = nn.L1Loss()
quadratic_loss = nn.MSELoss()
# Define optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# Define training parameters
n_epochs = args.epochs
alpha_yaw = args.yaw_cls_scale
alpha_pitch = args.pitch_cls_scale
beta_yaw = args.yaw_reg_scale
beta_pitch = args.pitch_reg_scale
idx_tensor_yaw = [idx for idx in range(bin_number_yaw)]
idx_tensor_yaw = Variable(torch.FloatTensor(idx_tensor_yaw)).to(device)
idx_tensor_pitch = [idx for idx in range(bin_number_pitch)]
idx_tensor_pitch = Variable(torch.FloatTensor(idx_tensor_pitch)).to(device)
softmax = nn.Softmax(dim=1).to(device)
# training loop
for epoch in range(n_epochs):
print(f"#### Epoch {epoch + 1} ####")
model.train()
total_yaw_reg = 0
total_pitch_reg = 0
total_yaw_bins = 0
total_pitch_bins = 0
total_yaw_combined = 0
total_pitch_combined = 0
iters_number = 0
for i, (images_gaze, labels_gaze, cont_labels_gaze) in enumerate(train_dataloader):
iters_number += 1
images_gaze = Variable(images_gaze).to(device)
label_yaw_cont_gaze = Variable(cont_labels_gaze[:, 0]).to(device)
label_pitch_cont_gaze = Variable(cont_labels_gaze[:, 1]).to(device)
label_yaw_gaze = labels_gaze[:, 0]
label_pitch_gaze = labels_gaze[:, 1]
if args.label_smoothing:
label_yaw_gaze = label_yaw_gaze.numpy()
label_yaw_gaze = smooth_labels(label_yaw_gaze, args.smoothing_sigma, bin_number_yaw)
label_pitch_gaze = label_pitch_gaze.numpy()
label_pitch_gaze = smooth_labels(label_pitch_gaze, args.smoothing_sigma, bin_number_pitch)
label_yaw_gaze = label_yaw_gaze.to(device)
label_pitch_gaze = label_pitch_gaze.to(device)
yaw, pitch, yaw_reg, pitch_reg = model(images_gaze)
loss_yaw_gaze = classification_loss(yaw, label_yaw_gaze)
loss_pitch_gaze = classification_loss(pitch, label_pitch_gaze)
yaw_reg = yaw_reg.view(-1)
pitch_reg = pitch_reg.view(-1)
loss_yaw_reg = regression_loss(label_yaw_cont_gaze, yaw_reg)
loss_pitch_reg = regression_loss(label_pitch_cont_gaze, pitch_reg)
loss = alpha_pitch * loss_pitch_gaze + alpha_yaw * loss_yaw_gaze + beta_pitch * loss_pitch_reg + beta_yaw * loss_yaw_reg
loss.backward()
optimizer.step()
with torch.no_grad():
yaw_predicted = softmax(yaw)
pitch_predicted = softmax(pitch)
yaw_predicted = torch.sum(yaw_predicted * idx_tensor_yaw, 1) * args.yaw_resolution + args.yaw_lower_range
pitch_predicted = torch.sum(pitch_predicted * idx_tensor_pitch, 1) * args.pitch_resolution + args.pitch_lower_range
loss_yaw_reg_bins = regression_loss(label_yaw_cont_gaze, yaw_predicted)
loss_pitch_reg_bins = regression_loss(label_pitch_cont_gaze, pitch_predicted)
loss_yaw_combined = regression_loss((yaw_predicted + yaw_reg)/2, label_yaw_cont_gaze)
loss_pitch_combined = regression_loss((pitch_predicted + pitch_reg)/2, label_pitch_cont_gaze)
total_yaw_reg += regression_loss(label_yaw_cont_gaze, yaw_predicted).detach()
total_pitch_reg += regression_loss(label_pitch_cont_gaze, pitch_predicted).detach()
total_yaw_bins += loss_yaw_reg_bins.detach()
total_pitch_bins += loss_pitch_reg_bins.detach()
total_yaw_combined += loss_yaw_combined.detach()
total_pitch_combined += loss_pitch_combined.detach()
logger.report_scalar(f"MAE fold no. {fold}", "Regression Yaw", iteration=epoch, value=(total_yaw_reg/iters_number))
logger.report_scalar(f"MAE fold no. {fold}", "Regression Pitch", iteration=epoch, value=(total_pitch_reg/iters_number))
logger.report_scalar(f"MAE fold no. {fold}", "Bins Yaw", iteration=epoch, value=(total_yaw_bins/iters_number))
logger.report_scalar(f"MAE fold no. {fold}", "Bins Pitch", iteration=epoch, value=(total_pitch_bins/iters_number))
logger.report_scalar(f"MAE fold no. {fold}", "Combined Yaw", iteration=epoch, value=(total_yaw_combined/iters_number))
logger.report_scalar(f"MAE fold no. {fold}", "Combined Pitch", iteration=epoch, value=(total_pitch_combined/iters_number))
total_yaw_reg = 0
total_pitch_reg = 0
total_yaw_bins = 0
total_pitch_bins = 0
total_yaw_combined = 0
total_pitch_combined = 0
val_iters = 0
model.eval()
with torch.no_grad():
for i, (images_gaze, labels_gaze, cont_labels_gaze) in enumerate(val_dataloader):
val_iters += 1
label_yaw_cont_gaze = Variable(cont_labels_gaze[:, 0]).to(device)
label_pitch_cont_gaze = Variable(cont_labels_gaze[:, 1]).to(device)
images_gaze = Variable(images_gaze).to(device)
yaw, pitch, yaw_reg, pitch_reg = model(images_gaze)
pitch_predicted = softmax(pitch)
yaw_predicted = softmax(yaw)
yaw_predicted = torch.sum(yaw_predicted * idx_tensor_yaw, 1) * args.yaw_resolution + args.yaw_lower_range
pitch_predicted = torch.sum(pitch_predicted * idx_tensor_pitch, 1) * args.pitch_resolution + args.pitch_lower_range
loss_pitch_bins = regression_loss(label_pitch_cont_gaze, pitch_predicted)
loss_yaw_bins = regression_loss(label_yaw_cont_gaze, yaw_predicted)
pitch_reg = pitch_reg.view(-1)
yaw_reg = yaw_reg.view(-1)
loss_pitch_reg = regression_loss(label_pitch_cont_gaze, pitch_reg)
loss_yaw_reg = regression_loss(label_yaw_cont_gaze, yaw_reg)
loss_pitch_combined = regression_loss(label_pitch_cont_gaze, (pitch_reg + pitch_predicted)/2)
loss_yaw_combined = regression_loss(label_yaw_cont_gaze, (yaw_reg + yaw_predicted)/2)
total_pitch_reg += loss_pitch_reg.detach()
total_yaw_reg += loss_yaw_reg.detach()
total_pitch_bins += loss_pitch_bins.detach()
total_yaw_bins += loss_yaw_bins.detach()
total_pitch_combined += loss_pitch_combined.detach()
total_yaw_combined += loss_yaw_combined.detach()
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Regression Yaw", iteration=epoch, value=(total_yaw_reg/val_iters))
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Regression Pitch", iteration=epoch, value=(total_pitch_reg/val_iters))
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Bins Yaw", iteration=epoch, value=(total_yaw_bins/val_iters))
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Bins Pitch", iteration=epoch, value=(total_pitch_bins/val_iters))
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Combined Yaw", iteration=epoch, value=(total_yaw_combined/val_iters))
logger.report_scalar(f"MAE fold no. {fold}", "[VAL] Combined Pitch", iteration=epoch, value=(total_pitch_combined/val_iters))
if args.output_folder:
# create output directory
os.makedirs(args.output_folder, exist_ok=True)
torch.save(model, os.path.join(args.output_folder, f"model_fold_{fold}_epoch{epoch+1}.pkl"))