forked from mct10/RepCodec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
228 lines (199 loc) · 7.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the CC BY-NC license found in the
# LICENSE file in the root directory of this source tree.
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)
import argparse
import logging
import os
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
)
logger = logging.getLogger("repcodec_train") # init logger before other modules
import random
import numpy as np
import torch
import yaml
from torch.utils.data import DataLoader
from dataloader import ReprDataset, ReprCollater
from losses.repr_reconstruct_loss import ReprReconstructLoss
from repcodec.RepCodec import RepCodec
from trainer.autoencoder import Trainer
class TrainMain:
def __init__(self, args):
# Fix seed and make backends deterministic
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not torch.cuda.is_available():
self.device = torch.device('cpu')
logger.info(f"device: cpu")
else:
self.device = torch.device('cuda:0') # only supports single gpu for now
logger.info(f"device: gpu")
torch.cuda.manual_seed_all(args.seed)
if args.disable_cudnn == "False":
torch.backends.cudnn.benchmark = True
# initialize config
with open(args.config, 'r') as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
self.config.update(vars(args))
# initialize model folder
expdir = os.path.join(args.exp_root, args.tag)
os.makedirs(expdir, exist_ok=True)
self.config["outdir"] = expdir
# save config
with open(os.path.join(expdir, "config.yml"), "w") as f:
yaml.dump(self.config, f, Dumper=yaml.Dumper)
for key, value in self.config.items():
logger.info(f"{key} = {value}")
# initialize attribute
self.resume: str = args.resume
self.data_loader = None
self.model = None
self.optimizer = None
self.scheduler = None
self.criterion = None
self.trainer = None
# initialize batch_length
self.batch_length: int = self.config['batch_length']
self.data_path: str = self.config['data']['path']
def initialize_data_loader(self):
train_set = self._build_dataset("train")
valid_set = self._build_dataset("valid")
collater = ReprCollater()
logger.info(f"The number of training files = {len(train_set)}.")
logger.info(f"The number of validation files = {len(valid_set)}.")
dataset = {"train": train_set, "dev": valid_set}
self._set_data_loader(dataset, collater)
def define_model_optimizer_scheduler(self):
# model arch
self.model = {
"repcodec": RepCodec(**self.config["model_params"]).to(self.device)
}
logger.info(f"Model Arch:\n{self.model['repcodec']}")
# opt
optimizer_class = getattr(
torch.optim,
self.config["model_optimizer_type"]
)
self.optimizer = {
"repcodec": optimizer_class(
self.model["repcodec"].parameters(),
**self.config["model_optimizer_params"]
)
}
# scheduler
scheduler_class = getattr(
torch.optim.lr_scheduler,
self.config.get("model_scheduler_type", "StepLR"),
)
self.scheduler = {
"repcodec": scheduler_class(
optimizer=self.optimizer["repcodec"],
**self.config["model_scheduler_params"]
)
}
def define_criterion(self):
self.criterion = {
"repr_reconstruct_loss": ReprReconstructLoss(
**self.config.get("repr_reconstruct_loss_params", {}),
).to(self.device)
}
def define_trainer(self):
self.trainer = Trainer(
steps=0,
epochs=0,
data_loader=self.data_loader,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
scheduler=self.scheduler,
config=self.config,
device=self.device
)
def initialize_model(self):
initial = self.config.get("initial", "")
if os.path.exists(self.resume): # resume from trained model
self.trainer.load_checkpoint(self.resume)
logger.info(f"Successfully resumed from {self.resume}.")
elif os.path.exists(initial): # initial new model with the pre-trained model
self.trainer.load_checkpoint(initial, load_only_params=True)
logger.info(f"Successfully initialize parameters from {initial}.")
else:
logger.info("Train from scrach")
def run(self):
assert self.trainer is not None
self.trainer: Trainer
try:
logger.info(f"The current training step: {self.trainer.steps}")
self.trainer.train_max_steps = self.config["train_max_steps"]
if not self.trainer._check_train_finish():
self.trainer.run()
finally:
self.trainer.save_checkpoint(
os.path.join(self.config["outdir"], f"checkpoint-{self.trainer.steps}steps.pkl")
)
logger.info(f"Successfully saved checkpoint @ {self.trainer.steps}steps.")
def _build_dataset(
self, subset: str
) -> ReprDataset:
data_dir = os.path.join(
self.data_path, self.config['data']['subset'][subset]
)
params = {
"data_dir": data_dir,
"batch_len": self.batch_length
}
return ReprDataset(**params)
def _set_data_loader(self, dataset, collater):
self.data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=True,
collate_fn=collater,
batch_size=self.config["batch_size"],
num_workers=self.config["num_workers"],
pin_memory=self.config["pin_memory"],
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
collate_fn=collater,
batch_size=self.config["batch_size"],
num_workers=0,
pin_memory=False, # save some memory. set to True if you have enough memory.
),
}
def train():
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, required=True,
help="the path of config yaml file."
)
parser.add_argument(
"--tag", type=str, required=True,
help="the outputs will be saved to exp_root/tag/"
)
parser.add_argument(
"--exp_root", type=str, default="exp"
)
parser.add_argument(
"--resume", default="", type=str, nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument("--seed", default=1337, type=int)
parser.add_argument("--disable_cudnn", choices=("True", "False"), default="False", help="Disable CUDNN")
args = parser.parse_args()
train_main = TrainMain(args)
train_main.initialize_data_loader()
train_main.define_model_optimizer_scheduler()
train_main.define_criterion()
train_main.define_trainer()
train_main.initialize_model()
train_main.run()
if __name__ == '__main__':
train()