jupyter |
jupytext |
kernelspec |
text_representation |
extension |
format_name |
format_version |
jupytext_version |
.md |
markdown |
1.3 |
1.14.6 |
|
|
display_name |
language |
name |
torch_cv |
python |
torch_cv |
|
|
%load_ext autoreload
%autoreload 2
import logging
logging.basicConfig()
logger = logging.getLogger('mysreality')
logger.setLevel(logging.INFO)
import mysreality.estate_reader as er
import pathlib
import numpy as np
from datetime import datetime,timedelta
import mysreality.api as api
import mysreality.db as db
root =pathlib.Path('/disk/knotek/baraky')
estates_data_path = root/'payloads'
reactions_dir = root/'user_reactions'
estate_reader = er.EstateReader(estates_data_path)
rdb = db.ReactionsDb(reactions_dir)
estates_api = api.EstatesAPI(rdb,estate_reader)
df = estates_api.read()
import mysreality.visualization as visu
def is_cheap(df):
filter_ = df["price"] < 4500000
is_near_external_station = (df['closest_station_km'] < 15) & (df['closest_station_name'] != 'Praha')
is_near_prague = (df['closest_station_km'] < 30) & (df['closest_station_name'] == 'Praha')
filter_ &= is_near_external_station | is_near_prague
filter_ &= df["Plocha pozemku"] > 500
filter_ &= (df["Stavba"]!="Dřevostavba") & (df["Stavba"]!="Montovaná")
filter_ &= df["state_score"]>4
return filter_
def is_close(df):
filter_ = df["price"] < 9_000_000
filter_ &= df['distance_to_base_km'] < 15
return filter_
import pandas as pd
pd.set_option("max_colwidth", None)
def final_filter(df):
df['is_cheap'] = is_cheap(df)
df['is_close'] = is_close(df)
df = df[(df['is_cheap']) | (df['is_close'])]
return df[df['reaction'].isnull()]
final_filter(df)[["Celková cena","price", "link","commute_min"]]
import geopy
import mysreality.assets as assets
stations = assets.load_stations()
praha_gps = stations['Praha']['gps']
{
k:geopy.distance.geodesic(praha_gps,v['gps']).km
for k,v in stations.items()
}