forked from rcrowley/go-metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.go
616 lines (528 loc) · 14.7 KB
/
sample.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
package metrics
import (
"math"
"math/rand"
"sort"
"sync"
"time"
)
const rescaleThreshold = time.Hour
// Samples maintain a statistically-significant selection of values from
// a stream.
type Sample interface {
Clear()
Count() int64
Max() int64
Mean() float64
Min() int64
Percentile(float64) float64
Percentiles([]float64) []float64
Size() int
Snapshot() Sample
StdDev() float64
Sum() int64
Update(int64)
Values() []int64
Variance() float64
}
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
// Decay Model for Streaming Systems".
//
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
type ExpDecaySample struct {
alpha float64
count int64
mutex sync.Mutex
reservoirSize int
t0, t1 time.Time
values *expDecaySampleHeap
}
// NewExpDecaySample constructs a new exponentially-decaying sample with the
// given reservoir size and alpha.
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
if UseNilMetrics {
return NilSample{}
}
s := &ExpDecaySample{
alpha: alpha,
reservoirSize: reservoirSize,
t0: time.Now(),
values: newExpDecaySampleHeap(reservoirSize),
}
s.t1 = s.t0.Add(rescaleThreshold)
return s
}
// Clear clears all samples.
func (s *ExpDecaySample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
s.t0 = time.Now()
s.t1 = s.t0.Add(rescaleThreshold)
s.values.Clear()
}
// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *ExpDecaySample) Count() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.count
}
// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *ExpDecaySample) Max() int64 {
return SampleMax(s.Values())
}
// Mean returns the mean of the values in the sample.
func (s *ExpDecaySample) Mean() float64 {
return SampleMean(s.Values())
}
// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *ExpDecaySample) Min() int64 {
return SampleMin(s.Values())
}
// Percentile returns an arbitrary percentile of values in the sample.
func (s *ExpDecaySample) Percentile(p float64) float64 {
return SamplePercentile(s.Values(), p)
}
// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *ExpDecaySample) Percentiles(ps []float64) []float64 {
return SamplePercentiles(s.Values(), ps)
}
// Size returns the size of the sample, which is at most the reservoir size.
func (s *ExpDecaySample) Size() int {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.values.Size()
}
// Snapshot returns a read-only copy of the sample.
func (s *ExpDecaySample) Snapshot() Sample {
s.mutex.Lock()
defer s.mutex.Unlock()
vals := s.values.Values()
values := make([]int64, len(vals))
for i, v := range vals {
values[i] = v.v
}
return &SampleSnapshot{
count: s.count,
values: values,
}
}
// StdDev returns the standard deviation of the values in the sample.
func (s *ExpDecaySample) StdDev() float64 {
return SampleStdDev(s.Values())
}
// Sum returns the sum of the values in the sample.
func (s *ExpDecaySample) Sum() int64 {
return SampleSum(s.Values())
}
// Update samples a new value.
func (s *ExpDecaySample) Update(v int64) {
s.update(time.Now(), v)
}
// Values returns a copy of the values in the sample.
func (s *ExpDecaySample) Values() []int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
vals := s.values.Values()
values := make([]int64, len(vals))
for i, v := range vals {
values[i] = v.v
}
return values
}
// Variance returns the variance of the values in the sample.
func (s *ExpDecaySample) Variance() float64 {
return SampleVariance(s.Values())
}
// update samples a new value at a particular timestamp. This is a method all
// its own to facilitate testing.
func (s *ExpDecaySample) update(t time.Time, v int64) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if s.values.Size() == s.reservoirSize {
s.values.Pop()
}
s.values.Push(expDecaySample{
k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / rand.Float64(),
v: v,
})
if t.After(s.t1) {
values := s.values.Values()
t0 := s.t0
s.values.Clear()
s.t0 = t
s.t1 = s.t0.Add(rescaleThreshold)
for _, v := range values {
v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
s.values.Push(v)
}
}
}
// NilSample is a no-op Sample.
type NilSample struct{}
// Clear is a no-op.
func (NilSample) Clear() {}
// Count is a no-op.
func (NilSample) Count() int64 { return 0 }
// Max is a no-op.
func (NilSample) Max() int64 { return 0 }
// Mean is a no-op.
func (NilSample) Mean() float64 { return 0.0 }
// Min is a no-op.
func (NilSample) Min() int64 { return 0 }
// Percentile is a no-op.
func (NilSample) Percentile(p float64) float64 { return 0.0 }
// Percentiles is a no-op.
func (NilSample) Percentiles(ps []float64) []float64 {
return make([]float64, len(ps))
}
// Size is a no-op.
func (NilSample) Size() int { return 0 }
// Sample is a no-op.
func (NilSample) Snapshot() Sample { return NilSample{} }
// StdDev is a no-op.
func (NilSample) StdDev() float64 { return 0.0 }
// Sum is a no-op.
func (NilSample) Sum() int64 { return 0 }
// Update is a no-op.
func (NilSample) Update(v int64) {}
// Values is a no-op.
func (NilSample) Values() []int64 { return []int64{} }
// Variance is a no-op.
func (NilSample) Variance() float64 { return 0.0 }
// SampleMax returns the maximum value of the slice of int64.
func SampleMax(values []int64) int64 {
if 0 == len(values) {
return 0
}
var max int64 = math.MinInt64
for _, v := range values {
if max < v {
max = v
}
}
return max
}
// SampleMean returns the mean value of the slice of int64.
func SampleMean(values []int64) float64 {
if 0 == len(values) {
return 0.0
}
return float64(SampleSum(values)) / float64(len(values))
}
// SampleMin returns the minimum value of the slice of int64.
func SampleMin(values []int64) int64 {
if 0 == len(values) {
return 0
}
var min int64 = math.MaxInt64
for _, v := range values {
if min > v {
min = v
}
}
return min
}
// SamplePercentiles returns an arbitrary percentile of the slice of int64.
func SamplePercentile(values int64Slice, p float64) float64 {
return SamplePercentiles(values, []float64{p})[0]
}
// SamplePercentiles returns a slice of arbitrary percentiles of the slice of
// int64.
func SamplePercentiles(values int64Slice, ps []float64) []float64 {
scores := make([]float64, len(ps))
size := len(values)
if size > 0 {
sort.Sort(values)
for i, p := range ps {
pos := p * float64(size+1)
if pos < 1.0 {
scores[i] = float64(values[0])
} else if pos >= float64(size) {
scores[i] = float64(values[size-1])
} else {
lower := float64(values[int(pos)-1])
upper := float64(values[int(pos)])
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
}
}
}
return scores
}
// SampleSnapshot is a read-only copy of another Sample.
type SampleSnapshot struct {
count int64
values []int64
}
func NewSampleSnapshot(count int64, values []int64) *SampleSnapshot {
return &SampleSnapshot{
count: count,
values: values,
}
}
// Clear panics.
func (*SampleSnapshot) Clear() {
panic("Clear called on a SampleSnapshot")
}
// Count returns the count of inputs at the time the snapshot was taken.
func (s *SampleSnapshot) Count() int64 { return s.count }
// Max returns the maximal value at the time the snapshot was taken.
func (s *SampleSnapshot) Max() int64 { return SampleMax(s.values) }
// Mean returns the mean value at the time the snapshot was taken.
func (s *SampleSnapshot) Mean() float64 { return SampleMean(s.values) }
// Min returns the minimal value at the time the snapshot was taken.
func (s *SampleSnapshot) Min() int64 { return SampleMin(s.values) }
// Percentile returns an arbitrary percentile of values at the time the
// snapshot was taken.
func (s *SampleSnapshot) Percentile(p float64) float64 {
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values at the time
// the snapshot was taken.
func (s *SampleSnapshot) Percentiles(ps []float64) []float64 {
return SamplePercentiles(s.values, ps)
}
// Size returns the size of the sample at the time the snapshot was taken.
func (s *SampleSnapshot) Size() int { return len(s.values) }
// Snapshot returns the snapshot.
func (s *SampleSnapshot) Snapshot() Sample { return s }
// StdDev returns the standard deviation of values at the time the snapshot was
// taken.
func (s *SampleSnapshot) StdDev() float64 { return SampleStdDev(s.values) }
// Sum returns the sum of values at the time the snapshot was taken.
func (s *SampleSnapshot) Sum() int64 { return SampleSum(s.values) }
// Update panics.
func (*SampleSnapshot) Update(int64) {
panic("Update called on a SampleSnapshot")
}
// Values returns a copy of the values in the sample.
func (s *SampleSnapshot) Values() []int64 {
values := make([]int64, len(s.values))
copy(values, s.values)
return values
}
// Variance returns the variance of values at the time the snapshot was taken.
func (s *SampleSnapshot) Variance() float64 { return SampleVariance(s.values) }
// SampleStdDev returns the standard deviation of the slice of int64.
func SampleStdDev(values []int64) float64 {
return math.Sqrt(SampleVariance(values))
}
// SampleSum returns the sum of the slice of int64.
func SampleSum(values []int64) int64 {
var sum int64
for _, v := range values {
sum += v
}
return sum
}
// SampleVariance returns the variance of the slice of int64.
func SampleVariance(values []int64) float64 {
if 0 == len(values) {
return 0.0
}
m := SampleMean(values)
var sum float64
for _, v := range values {
d := float64(v) - m
sum += d * d
}
return sum / float64(len(values))
}
// A uniform sample using Vitter's Algorithm R.
//
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
type UniformSample struct {
count int64
mutex sync.Mutex
reservoirSize int
values []int64
}
// NewUniformSample constructs a new uniform sample with the given reservoir
// size.
func NewUniformSample(reservoirSize int) Sample {
if UseNilMetrics {
return NilSample{}
}
return &UniformSample{
reservoirSize: reservoirSize,
values: make([]int64, 0, reservoirSize),
}
}
// Clear clears all samples.
func (s *UniformSample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
s.values = make([]int64, 0, s.reservoirSize)
}
// Count returns the number of samples recorded, which may exceed the
// reservoir size.
func (s *UniformSample) Count() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.count
}
// Max returns the maximum value in the sample, which may not be the maximum
// value ever to be part of the sample.
func (s *UniformSample) Max() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMax(s.values)
}
// Mean returns the mean of the values in the sample.
func (s *UniformSample) Mean() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMean(s.values)
}
// Min returns the minimum value in the sample, which may not be the minimum
// value ever to be part of the sample.
func (s *UniformSample) Min() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleMin(s.values)
}
// Percentile returns an arbitrary percentile of values in the sample.
func (s *UniformSample) Percentile(p float64) float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values in the
// sample.
func (s *UniformSample) Percentiles(ps []float64) []float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SamplePercentiles(s.values, ps)
}
// Size returns the size of the sample, which is at most the reservoir size.
func (s *UniformSample) Size() int {
s.mutex.Lock()
defer s.mutex.Unlock()
return len(s.values)
}
// Snapshot returns a read-only copy of the sample.
func (s *UniformSample) Snapshot() Sample {
s.mutex.Lock()
defer s.mutex.Unlock()
values := make([]int64, len(s.values))
copy(values, s.values)
return &SampleSnapshot{
count: s.count,
values: values,
}
}
// StdDev returns the standard deviation of the values in the sample.
func (s *UniformSample) StdDev() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleStdDev(s.values)
}
// Sum returns the sum of the values in the sample.
func (s *UniformSample) Sum() int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleSum(s.values)
}
// Update samples a new value.
func (s *UniformSample) Update(v int64) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if len(s.values) < s.reservoirSize {
s.values = append(s.values, v)
} else {
r := rand.Int63n(s.count)
if r < int64(len(s.values)) {
s.values[int(r)] = v
}
}
}
// Values returns a copy of the values in the sample.
func (s *UniformSample) Values() []int64 {
s.mutex.Lock()
defer s.mutex.Unlock()
values := make([]int64, len(s.values))
copy(values, s.values)
return values
}
// Variance returns the variance of the values in the sample.
func (s *UniformSample) Variance() float64 {
s.mutex.Lock()
defer s.mutex.Unlock()
return SampleVariance(s.values)
}
// expDecaySample represents an individual sample in a heap.
type expDecaySample struct {
k float64
v int64
}
func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
}
// expDecaySampleHeap is a min-heap of expDecaySamples.
// The internal implementation is copied from the standard library's container/heap
type expDecaySampleHeap struct {
s []expDecaySample
}
func (h *expDecaySampleHeap) Clear() {
h.s = h.s[:0]
}
func (h *expDecaySampleHeap) Push(s expDecaySample) {
n := len(h.s)
h.s = h.s[0 : n+1]
h.s[n] = s
h.up(n)
}
func (h *expDecaySampleHeap) Pop() expDecaySample {
n := len(h.s) - 1
h.s[0], h.s[n] = h.s[n], h.s[0]
h.down(0, n)
n = len(h.s)
s := h.s[n-1]
h.s = h.s[0 : n-1]
return s
}
func (h *expDecaySampleHeap) Size() int {
return len(h.s)
}
func (h *expDecaySampleHeap) Values() []expDecaySample {
return h.s
}
func (h *expDecaySampleHeap) up(j int) {
for {
i := (j - 1) / 2 // parent
if i == j || !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
j = i
}
}
func (h *expDecaySampleHeap) down(i, n int) {
for {
j1 := 2*i + 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
j = j2 // = 2*i + 2 // right child
}
if !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
i = j
}
}
type int64Slice []int64
func (p int64Slice) Len() int { return len(p) }
func (p int64Slice) Less(i, j int) bool { return p[i] < p[j] }
func (p int64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }