-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTBP.Rmd
1625 lines (1108 loc) · 66.3 KB
/
TBP.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Tuberculosis Progression Signature Identification and Classification Model"
---
### Introduction
* Notations:
+ progressor: Not progressed when sequenced, progressed later
+ non-progressor (LTBI): Not progressed until now, keeping latent TB infected
+ TB: active TB when sequenced
* Data:
+ Africa Baseline: 142 samples (39 progressors, 103 controls)
+ Brazil.1 (progressor vs. non-progressor): 37 samples (16 progressors, 21 non-progressor)
+ Brazil.2 (TB vs. LTBI): 35 samples (14 TB, 21 LTBI)
* Pipeline
+ get africa signatures from Africa dataset
+ batch correct africa + brazil.1, africa + brazil.2
+ train classification models on batch corrected africa dataset and then predict brazil.1 and brazil.2
#### Load Name.RData and packages
```{r}
# source a folder
sourceDir <- function(path, trace = TRUE, ...) {
for (nm in list.files(path, pattern = "[.][RrSsQq]$")) {
if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")
}
}
# R_lab_jason is a folder of functions that I often use.
# download at: https://github.com/jasonzhao0307/R_lib_jason
sourceDir("path.to.R_lib_jason/")
```
#### Load Packages and Functions
```{r, message=FALSE}
#library
require(xgboost)
require(tidyverse)
require(ranger)
require(DESeq2)
require(pheatmap)
require(glmnet)
require(randomForest)
require(DESeq)
require(gridExtra)
require(ggfortify)
require(sva)
require(ROCR)
require(caTools)
require(caret)
require(scrime)
require(FeatureSelection)
require(DMwR)
require(biomaRt)
require(gmodels)
# Define functions
# define a function to retrieve the training CV process average AUC
Get_Training_Metrics <- function(eva.list){
glmnet.auc <- c()
glmnet.sen <- c()
glmnet.spe <- c()
svm.auc <- c()
svm.sen <- c()
svm.spe <- c()
ranger.auc <- c()
ranger.sen <- c()
ranger.spe <- c()
xgb.auc <- c()
xgb.sen <- c()
xgb.spe <- c()
for (i in 1:length(eva.list)){
glmnet.auc[i] <- mean(eva.list[[i]]$glmnet$model$results$ROC)
svm.auc[i] <- mean(eva.list[[i]]$svm$model$results$ROC)
ranger.auc[i] <- mean(eva.list[[i]]$ranger$model$results$ROC)
xgb.auc[i] <- mean(eva.list[[i]]$xgb$model$results$ROC)
glmnet.sen[i] <- mean(eva.list[[i]]$glmnet$model$results$Sens)
svm.sen[i] <- mean(eva.list[[i]]$svm$model$results$Sens)
ranger.sen[i] <- mean(eva.list[[i]]$ranger$model$results$Sens)
xgb.sen[i] <- mean(eva.list[[i]]$xgb$model$results$Sens)
glmnet.spe[i] <- mean(eva.list[[i]]$glmnet$model$results$Spec)
svm.spe[i] <- mean(eva.list[[i]]$svm$model$results$Spec)
ranger.spe[i] <- mean(eva.list[[i]]$ranger$model$results$Spec)
xgb.spe[i] <- mean(eva.list[[i]]$xgb$model$results$Spec)
}
df.output <- NULL
row.glmnet <- c(mean(glmnet.auc), ci(glmnet.auc)[2], ci(glmnet.auc)[3], mean(glmnet.sen), ci(glmnet.sen)[2], ci(glmnet.sen)[3], mean(glmnet.spe), ci(glmnet.spe)[2], ci(glmnet.spe)[3])
df.output <- rbind(df.output, row.glmnet)
row.svm <- c(mean(svm.auc), ci(svm.auc)[2], ci(svm.auc)[3], mean(svm.sen), ci(svm.sen)[2], ci(svm.sen)[3], mean(svm.spe), ci(svm.spe)[2], ci(svm.spe)[3])
df.output <- rbind(df.output, row.svm)
row.ranger <- c(mean(ranger.auc), ci(ranger.auc)[2], ci(ranger.auc)[3], mean(ranger.sen), ci(ranger.sen)[2], ci(ranger.sen)[3], mean(ranger.spe), ci(ranger.spe)[2], ci(ranger.spe)[3])
df.output <- rbind(df.output, row.ranger)
row.xgb <- c(mean(xgb.auc), ci(xgb.auc)[2], ci(xgb.auc)[3], mean(xgb.sen), ci(xgb.sen)[2], ci(xgb.sen)[3], mean(xgb.spe), ci(xgb.spe)[2], ci(xgb.spe)[3])
df.output <- rbind(df.output, row.xgb)
# return
colnames(df.output) <- c("auc.mean", "auc.ci.lower", "auc.ci.upper", "sen.mean", "sen.ci.lower", "sen.ci.upper","spe.mean", "spe.ci.lower", "spe.ci.upper")
rownames(df.output) <- c("glmnet", "svm", "ranger", "xgboost")
return(df.output)
}
# get threshold of prediction probability for calculating best sensitivit + specificity
Get_Classification_Threshold <- function(predict, response) {
perf <- ROCR::performance(ROCR::prediction(predict, response), "sens", "spec")
df <- data.frame(cut = [email protected][[1]], sens = [email protected][[1]], spec = [email protected][[1]])
df[which.max(df$sens + df$spec), "cut"]
}
# input a vector of predicted probability and true label, output sensitivity and specificity at best cut-off.
Get_Sensitivity_And_Specificity <- function(predict, response, provide.cutoff = FALSE, cutoff.value = 0.5){
if (provide.cutoff == FALSE){
prob.cutoff <- Get_Classification_Threshold(predict, response)
} else{
prob.cutoff <- cutoff.value
}
pred <- ifelse(predict > prob.cutoff, 1, 0)
# Must specify which class is positive !!!
# also, in this case, we need to use character.
cm = confusionMatrix(as.character(pred), as.character(response), positive = "1")
sensi <- cm$byClass[1]
speci <- cm$byClass[2]
return(list(sensi=sensi,speci=speci))
}
# input a list of predicted probability and true label, output sensitivity and specificity at best cut-off.
Get_Sensitivity_And_Specificity_List <- function(predict.list, response.list, provide.cutoff = FALSE, cutoff.value = 0.5){
sen.vec <- c()
spe.vec <- c()
for (i in 1:length(predict.list)){
tmp <- Get_Sensitivity_And_Specificity(predict.list[[i]], response.list[[i]], provide.cutoff, cutoff.value)
sen.vec[i] <- tmp$sensi
spe.vec[i] <- tmp$speci
}
return.list <- list(sen.vec = sen.vec,spe.vec = spe.vec)
return(return.list)
}
# input a eva list, output average value, confidance interval for:
# AUC
# sensitivity & specificity at the best prob cut-off where maximazing sen+spe
Get_Classification_Evaluation <- function(eva.list, response.list, provide.cutoff = FALSE, cutoff.value = 0.5){
df.output <- NULL
auc.glmnet <- sapply(eva.list, function(x) x$glmnet$`testing set AUC`)
auc.svm <- sapply(eva.list, function(x) x$svmLinear$`testing set AUC`)
auc.ranger <- sapply(eva.list, function(x) x$ranger$`testing set AUC`)
auc.xgbLinear <- sapply(eva.list, function(x) x$xgbLinear$`testing set AUC`)
prob.glmnet <- lapply(eva.list, function(x) x$glmnet$probabilities)
prob.svm <- lapply(eva.list, function(x) x$svmLinear$probabilities)
prob.ranger <- lapply(eva.list, function(x) x$ranger$probabilities)
prob.xgbLinear <- lapply(eva.list, function(x) x$xgbLinear$probabilities)
# glmnet
tmp <- Get_Sensitivity_And_Specificity_List(prob.glmnet, response.list, provide.cutoff, cutoff.value)
row.glmnet <- c(mean(auc.glmnet), ci(auc.glmnet)[2], ci(auc.glmnet)[3], mean(tmp$sen.vec), ci(tmp$sen.vec)[2], ci(tmp$sen.vec)[3], mean(tmp$spe.vec), ci(tmp$spe.vec)[2], ci(tmp$spe.vec)[3])
df.output <- rbind(df.output, row.glmnet)
# svm
tmp <- Get_Sensitivity_And_Specificity_List(prob.svm, response.list, provide.cutoff, cutoff.value)
row.svm <- c(mean(auc.svm), ci(auc.svm)[2], ci(auc.svm)[3], mean(tmp$sen.vec), ci(tmp$sen.vec)[2], ci(tmp$sen.vec)[3], mean(tmp$spe.vec), ci(tmp$spe.vec)[2], ci(tmp$spe.vec)[3])
df.output <- rbind(df.output, row.svm)
# ranger
tmp <- Get_Sensitivity_And_Specificity_List(prob.ranger, response.list, provide.cutoff, cutoff.value)
row.ranger <- c(mean(auc.ranger), ci(auc.ranger)[2], ci(auc.ranger)[3], mean(tmp$sen.vec), ci(tmp$sen.vec)[2], ci(tmp$sen.vec)[3], mean(tmp$spe.vec), ci(tmp$spe.vec)[2], ci(tmp$spe.vec)[3])
df.output <- rbind(df.output, row.ranger)
# xgbLinear
tmp <- Get_Sensitivity_And_Specificity_List(prob.xgbLinear, response.list, provide.cutoff, cutoff.value)
row.xgbLinear <- c(mean(auc.xgbLinear), ci(auc.xgbLinear)[2], ci(auc.xgbLinear)[3], mean(tmp$sen.vec), ci(tmp$sen.vec)[2], ci(tmp$sen.vec)[3], mean(tmp$spe.vec), ci(tmp$spe.vec)[2], ci(tmp$spe.vec)[3])
df.output <- rbind(df.output, row.xgbLinear)
# return
colnames(df.output) <- c("auc.mean", "auc.ci.lower", "auc.ci.upper", "sen.mean", "sen.ci.lower", "sen.ci.upper","spe.mean", "spe.ci.lower", "spe.ci.upper")
rownames(df.output) <- c("glmnet", "svm", "ranger", "xgboost")
return(df.output)
}
# gene name map
Get_Gene_Mapping_Dict <- function(filter, gene.name){
filter.pool <- c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "affy_hg_u133_plus_2", "gene_biotype", "transcript_biotype")
if (!filter %in% filter.pool){
stop(paste0("Please use the name from the list: ", paste(filter.pool, collapse = ",")))
}
ensembl = useMart("ensembl", dataset = "hsapiens_gene_ensembl")
name.dict <- getBM(attributes = c("entrezgene", "ensembl_gene_id", "hgnc_symbol", "affy_hg_u133_plus_2", "gene_biotype", "transcript_biotype"), filters = filter, values = gene.name, mart=ensembl)
#name.dict <- apply(name.dict, 2, as.character)
return(name.dict)
}
# Compare the loocv auc for multiple signatures within one dataset
# provide names for signature.list!
Compare_LOOCV_AUC <- function(df, target.vec, signature.list){
auc.output <- c()
for (i in 1:length(signature.list)){
auc.output[i] <- LOOAUC_simple_multiple_noplot_one_df(df[which(rownames(df) %in% signature.list[[i]]),], target.vec)
}
names(auc.output) <- names(signature.list)
return(auc.output)
}
# use days to progression as a filter
D2P_Filter <- function(df, d2p, cor.spearman.abs.cutoff){
cor.gene.with.d2p <- c()
for (i in 1:nrow(df)){
cor.gene.with.d2p[i] <- cor(as.numeric(df[i,]), d2p, method = "spearman")
}
df.output <- df[which(abs(cor.gene.with.d2p) > cor.spearman.abs.cutoff),]
return(df.output)
}
# Get Average_Top_Features from a list
Get_Average_Top_Features <- function(signature.list){
# mean signature length
num.single.best.feature <- ceiling(mean(sapply(signature.list, length)))
# get the count for each gene
signature.count <- sort(table(unlist(signature.list)), decreasing = TRUE)
# get the top N genes.
single.best.feature <- names(signature.count)[1:num.single.best.feature]
return(single.best.feature)
}
# Feature selection by applying Feature_Selection_Wrapper to get a smaller set.
# Also, run multiple times with different seeds.
Feature_Selection_Wrapper_Multiple_Seeds_One_Round <- function(df.train, label.num.vec, seed.vec = 1:100){
signature.list <- list()
for(i in 1:length(seed.vec)){
print(paste0("Start Round ", i))
fs.round.1 <- Feature_Selection_Wrapper(df.train, label.num.vec, seed = seed.vec[i])
signature.list[[i]] <- fs.round.1
}
return(signature.list)
}
# use rf, lasso and xgboost for fs
Feature_Selection_Wrapper <- function(df.train, label.num.vec, seed = 10){
set.seed(seed)
X_train <- as.data.frame(t(as.matrix(df.train)))
y_train <- label.num.vec
params_glmnet = list(alpha = 1, family = 'binomial', nfolds = 5, parallel = TRUE)
params_xgboost = list( params = list("objective" = "binary:logistic", "bst:eta" = 0.001,
"subsample" = 0.75, "max_depth" = 5, "colsample_bytree" = 0.75,
"nthread" = 6),nrounds = 1000, print.every.n = 250, maximize = FALSE)
params_ranger = list(dependent.variable.name = 'y', probability = FALSE, num.trees = 1000, verbose = TRUE,
mtry = 5, min.node.size = 10, num.threads = 6, classification = TRUE,
importance = 'permutation')
params_features = list(keep_number_feat = NULL, union = TRUE)
feat = wrapper_feat_select(X = X_train, y = y_train, params_glmnet = params_glmnet,
params_xgboost = params_xgboost, params_ranger = params_ranger,
xgb_sort = 'Gain', CV_folds = 5, stratified_regr = FALSE,
scale_coefs_glmnet = FALSE, cores_glmnet = 5,
params_features = params_features, verbose = TRUE)
fs.union <- feat$union_feat
fs.union$feature <- as.character(fs.union$feature)
dfList.loocv <- list()
loocv.importance.vec <- seq(0.5,0.8,0.05)
for (i in 1:length(loocv.importance.vec)){
fs.union.frequent.tmp <- fs.union$feature[fs.union$Frequency == 3 &
fs.union$importance >= loocv.importance.vec[i]]
# if fs.union.frequent.tmp is less than two genes:
if (length(fs.union.frequent.tmp) <= 2){
fs.union.frequent.tmp <- fs.union$feature[fs.union$Frequency == 3]
}
dfList.loocv[[i]] <- df.train[which(rownames(df.train) %in% fs.union.frequent.tmp), ]
}
loocv.auc <- LOOAUC_simple_multiple_noplot(dfList.loocv, label.num.vec)
#plot(loocv.auc, x = loocv.importance.vec, main = "Feature Importance Cut-off LOOCV", xlab = "Ensemble model importance", ylab = "AUC")
importance.threshold <- max(loocv.importance.vec[which(loocv.auc == max(loocv.auc))])
fs.union.frequent <- fs.union$feature[fs.union$Frequency == 3 & fs.union$importance >= importance.threshold]
return(fs.union.frequent)
}
# IQR filter
IQR_Filter <- function(df, top.n.or.ratio, use.ratio = FALSE){
gene.vec.sorted <- rownames(df)[order(-apply(as.matrix(df), 1, IQR))]
if (use.ratio == TRUE){
top.n.or.ratio <- round(top.n.or.ratio * nrow(df))
df.output <- df[which(rownames(df) %in% gene.vec.sorted[1:top.n.or.ratio]),]
} else{
df.output <- df[which(rownames(df) %in% gene.vec.sorted[1:top.n.or.ratio]),]
}
return(df.output)
}
perm = function(n, x) {
return(factorial(n) / factorial(n-x))
}
comb = function(n, x) {
return(factorial(n) / (factorial(x) * factorial(n-x)))
}
RemoveSpecialChar <- function(string){
return(gsub("[][!#$%()*,.:;<=>@^_-`|~.{}]", "", string))
}
MaxFilter <- function(df, max.value = 10){
df.filtered <- df[which(apply(df,1,max) >= max.value),]
return(df.filtered)
}
# DE analysis
DeAnalysis <- function(df, treatments, gender, age = "SAME"){
if (is.factor(gender) == FALSE){
gender <- as.factor(gender)
}
if (length(age) == 1) {
coldata <- data.frame(condition = treatments, gender = gender)
rownames(coldata) <- colnames(df)
dds <- DESeqDataSetFromMatrix(countData = df,
colData = coldata,
design = ~ condition + gender)
} else{
coldata <- data.frame(condition = treatments, gender = gender, age = age)
rownames(coldata) <- colnames(df)
dds <- DESeqDataSetFromMatrix(countData = df,
colData = coldata,
design = ~ condition + gender + age)
}
#pre-filter
dds <- dds[rowSums(counts(dds)) > 1,]
#calculate the factor2
dds <- estimateSizeFactors(dds)
#DE
dds <- DESeq(dds)
res <- results(dds, contrast=c("condition","progressor","control"))
res.ordered <- res[order(res$padj),]
return(res.ordered)
}
# get differential expressed genes with a padj cut-off from de output
GetDEG <- function(de.result, padj.cut.off){
res.sig <- subset(de.result, padj < padj.cut.off)
return(rownames(res.sig))
}
# cbind two dataframes
Cbind_Df <- function(df.1, df.2){
# unify rownames
rowname.overlap <- intersect(rownames(df.1), rownames(df.2))
df.1 <- df.1[match(rowname.overlap, rownames(df.1)),]
df.2 <- df.2[match(rowname.overlap, rownames(df.2)),]
# combine
df.all <- cbind(df.1, df.2)
return(df.all)
}
Combat_Ref <- function(df, batch, ref = "old", mean.only = TRUE, mod){
batch <- batch
df.ref <- ComBat(df, batch=batch, mod=mod, ref.batch=ref, mean.only = mean.only)
df.list <- list(a = df.ref[,1:(sum(batch == ref))], b = df.ref[,(sum(batch == ref) + 1):ncol(df.ref)], all = df.ref)
return(df.list)
}
Combat_No_Ref <- function(df, batch, first = "old", mean.only = TRUE){
cb.sample <- data.frame(seq(1,ncol(df),1))
pheno <- cbind(cb.sample, cb.sample)
modcombat = model.matrix(~1, data=pheno)
df.cb = ComBat(dat=df, batch=batch, mod=modcombat, mean.only = mean.only)
df.list <- list(a = df.cb[,1:(sum(batch == first))], b = df.cb[,(sum(batch == first) + 1):ncol(df.cb)], all = df.cb)
return(df.list)
}
Svaseq_Adjust <- function(df, target.vec){
pheno <- NULL
pheno <- cbind(NULL, target.vec)
pheno <- cbind(pheno, rep(1,length(target.vec)))
pheno <- cbind(pheno, rep(1,length(target.vec)))
pheno <- cbind(pheno, rep(1,length(target.vec)))
pheno <- as.data.frame(pheno)
rownames(pheno) <- colnames(df)
colnames(pheno) <- c("treatment","ramdom", "sample", "batch")
edata <- as.matrix(df)
mod = model.matrix(~as.factor(treatment), data=pheno)
mod0 = model.matrix(~1,data=pheno)
n.sv = num.sv(edata,mod,method="be")
svobj = svaseq(edata,mod,mod0,n.sv=n.sv)
fsvaobj = fsva(edata,mod,svobj,edata)
edata.adjusted <- fsvaobj$db
return(edata.adjusted)
}
```
#### Load Data
```{r, message=FALSE}
#First, load the data and make sure it's formatted well
# Lancet paper 16-gene biomarker
lancet.biomarker <- c("ANKRD22", "APOL1", "BATF2", "ETV7", "FCGR1A", "FCGR1B", "GBP1", "GBP2", "GBP4", "GBP5", "SCARF1", "SEPT4", "SERPING1", "STAT1", "TAP1", "TRAFD1")
tb.signature.list <- readRDS("../tb.signature.rds")
tb.signature.list[[6]] <- c("FCGR1A", "HK3", "RAB13", "RBBP8", "IFI44L", "TIMM10", "BCL6", "SMARCD3", "CYP4F3", "SLPI")
names(tb.signature.list)[6] <- "sambarey"
############ Africa data #############################
counts.africa.progressor <- read.table("../data/count_africa_progressor.txt",header=TRUE,row.names=1)
counts.africa.control <- read.table("../data/counts_africa_control.txt",header=TRUE,row.names=1)
counts.africa <- cbind.data.frame(counts.africa.progressor, counts.africa.control)
#num of progressor should be 77 samples. There is one IC sample SRR3235808.featureCounts wrongly labeled as progressor, which is already in IC group
counts.africa <- counts.africa[,-49]
treatments.africa <- c(rep("progressor",77),rep("control",104))
treatments.africa.num <- treatments.africa
treatments.africa.num[treatments.africa.num == "progressor"] <- 1
treatments.africa.num[treatments.africa.num == "control"] <- 0
shortname <- c()
for (i in 1:181){
tmp_id <- strsplit(colnames(counts.africa)[i], ".", fixed = TRUE)[[1]][1]
shortname <- c(shortname, tmp_id)
}
colnames(counts.africa) <- shortname
#gender
gender.africa.progressor <- read.csv("../data/srr_gender_progressor.txt", sep = "\t", header = F)
gender.africa.control <- read.csv("../data/srr_gender_control.txt", sep = "\t", header = F)
gender.africa.DF <- rbind(gender.africa.progressor,gender.africa.control)
gender.africa <- c()
for (i in 1:181){
srr <- colnames(counts.africa)[i]
gender.africa <- c(gender.africa, as.character(gender.africa.DF$V2[gender.africa.DF$V1 == srr]))
}
for (i in 1:181){
if (gender.africa[i] == "male"){
gender.africa[i] = "Male"
}
else{
gender.africa[i] = "Female"
}
}
# prepare clinical features for modeling
gender.africa.num <- gender.africa
gender.africa.num[gender.africa.num == "Male"] <- 1
gender.africa.num[gender.africa.num == "Female"] <- 0
gender.africa.num <- as.numeric(gender.africa.num)
# read baseline africa data
baseline <- (read.table("../data/baseline_srr.txt", sep = "\t", stringsAsFactors = F))$V1
counts.africa.baseline <- counts.africa[,c(which(colnames(counts.africa) %in% baseline), 78:181)]
treatments.africa.baseline <- treatments.africa[c(which(colnames(counts.africa) %in% baseline), 78:181)]
treatments.africa.baseline.num <- treatments.africa.baseline
treatments.africa.baseline.num[treatments.africa.baseline.num == "progressor"] <- 1
treatments.africa.baseline.num[treatments.africa.baseline.num == "control"] <- 0
gender.africa.baseline <- gender.africa[c(which(colnames(counts.africa) %in% baseline), 78:181)]
gender.africa.baseline.num <- gender.africa.num[c(which(colnames(counts.africa) %in% baseline), 78:181)]
### Add 12 more samples to Africa baseline
africa.baseline.new.names <- c("SRR3236050", "SRR3235805", "SRR3235830", "SRR3235844", "SRR3235953", "SRR3235962", "SRR3236110", "SRR3235975", "SRR3235979", "SRR3235982", "SRR3235985", "SRR3235988")
counts.africa.baseline.newpart <- counts.africa[,which(colnames(counts.africa) %in% africa.baseline.new.names)]
counts.africa.baseline.updated <- cbind(counts.africa.baseline[,1:28], counts.africa.baseline.newpart)
counts.africa.baseline <- cbind(counts.africa.baseline.updated, counts.africa.baseline[,29:ncol(counts.africa.baseline)])
treatments.africa.baseline <- c(rep("progressor", 40), rep("control", 104))
treatments.africa.baseline.num <- treatments.africa.baseline
treatments.africa.baseline.num[treatments.africa.baseline.num == "progressor"] <- 1
treatments.africa.baseline.num[treatments.africa.baseline.num == "control"] <- 0
gender.africa.baseline <- gender.africa[which(colnames(counts.africa) %in% colnames(counts.africa.baseline))]
gender.africa.baseline.num <- gender.africa.num[which(colnames(counts.africa) %in% colnames(counts.africa.baseline))]
# days to progression
srrTime <- read.table("../metadata/srrDays_progressor.txt", header = FALSE, na.strings = "---", stringsAsFactors = FALSE)
srrTime <- srrTime[c(-14),]
time_new = c()
for(i in 1:77){
time_new <- c(time_new, srrTime[srrTime[,2] == colnames(counts.africa)[i], 3])
}
d2p.africa <- c(time_new, rep(4000,104))
d2p.africa.baseline <- d2p.africa[match(colnames(counts.africa.baseline), colnames(counts.africa))]
############ Brazil data #############################
#read old data
counts.brazil.old <- read.table("../data/counts_brazil_old.txt",header=TRUE,row.names=1)
#remove TST5, tst7, tst9, and other IC from brazil.old
counts.brazil.old.TBvsLTBI <- counts.brazil.old[,-c(35,37,39, 1:19)]
counts.brazil.old <- counts.brazil.old[,-c(seq(20,29,1), 35, 37, 39,11,12,10,17)]
counts.brazil.old.9 <- counts.brazil.old[,-c(seq(20,29,1), 11,12,10,17)]
counts.brazil.old.TBvsLTBI.more <- counts.brazil.old[,c(11,12,17,10,20:33, 35:39)]
#Sample TSTplus-4 has been shifted into the G1 group
colnames(counts.brazil.old)[20] <- 'G1.10L001'
colnames(counts.brazil.old.9)[20] <- 'G1.10L001'
#remove other characters
for (i in 1:ncol(counts.brazil.old)){
if (grepl("L001",colnames(counts.brazil.old)[i])) {
colnames(counts.brazil.old)[i] <- gsub('L001','.old',colnames(counts.brazil.old)[i])
colnames(counts.brazil.old)[i] <- gsub('plus','',colnames(counts.brazil.old)[i])
}
}
for (i in 1:ncol(counts.brazil.old.9)){
if (grepl("L001",colnames(counts.brazil.old.9)[i])) {
colnames(counts.brazil.old.9)[i] <- gsub('L001','',colnames(counts.brazil.old.9)[i])
colnames(counts.brazil.old.9)[i] <- gsub('plus','',colnames(counts.brazil.old.9)[i])
}
}
for (i in 1:ncol(counts.brazil.old.TBvsLTBI.more)){
if (grepl("L001",colnames(counts.brazil.old.TBvsLTBI.more)[i])) {
colnames(counts.brazil.old.TBvsLTBI.more)[i] <- gsub('L001','',colnames(counts.brazil.old.TBvsLTBI.more)[i])
colnames(counts.brazil.old.TBvsLTBI.more)[i] <- gsub('plus','',colnames(counts.brazil.old.TBvsLTBI.more)[i])
}
}
# order by treatments
counts.brazil.old <- counts.brazil.old[,c(1:9, 20, 10:15,17:19, 21:22, 16)]
treatments.brazil.old <- c(rep("progressor",16),rep("control",6))
gender.brazil.old <- c("Female","Female", "Male", "Female", "Male","Male","Female", "Female", "Female", "Female", "Male", "Female","Female","Female","Female","Male","Female","Male", "Male", "Female", "Female","Female")
counts.brazil.old.9 <- counts.brazil.old.9[,c(1:9, 20, 10:15,17:19, 21:25, 16)]
treatments.brazil.old.9 <- c(rep("progressor",16),rep("control",9))
treatments.brazil.old.9.num <- treatments.brazil.old.9
treatments.brazil.old.9.num[treatments.brazil.old.9.num == "progressor"] <- 1
treatments.brazil.old.9.num[treatments.brazil.old.9.num == "control"] <- 0
gender.brazil.old.9 <- c("Female","Female", "Male", "Female", "Male","Male","Female", "Female", "Female", "Female", "Male", "Female","Female","Female","Female","Male","Female","Male", "Male", "Male", "Female", "Female","Female", "Male", "Female")
d2p.brazil.old.9 <- c(1130, 1534, 237, 855, 589, 1003, 272, 732,234, 1795, 102, 29, 36, 43, 11, 71, rep(4000, 9))
treatments.brazil.TBvs.LTBI.more <- c(rep("TB",14),rep("control",9))
treatments.brazil.TBvs.LTBI.more.num <- treatments.brazil.TBvs.LTBI.more
treatments.brazil.TBvs.LTBI.more.num[treatments.brazil.TBvs.LTBI.more.num == "TB"] <- 1
treatments.brazil.TBvs.LTBI.more.num[treatments.brazil.TBvs.LTBI.more.num == "control"] <- 0
gender.brazil.old.num <- gender.brazil.old.9
gender.brazil.old.num[gender.brazil.old.num == "Male"] <- 1
gender.brazil.old.num[gender.brazil.old.num == "Female"] <- 0
gender.brazil.old.num <- as.numeric(gender.brazil.old.num)
# QC
# remove G1.9, G1.13, TST.54 from Brazil
counts.brazil.old <- counts.brazil.old[,-9]
treatments.brazil.old <- treatments.brazil.old[-9]
gender.brazil.old <- gender.brazil.old[-9]
#write.csv(counts.brazil.old, "../data/counts_brazil.old_reformat.csv")
# d2p: days to progression
d2p.brazil.old <- c(1130, 1534, 237, 855, 589, 1003, 272, 732, 1795, 102, 29, 36, 43, 11, 71, rep(4000, 6))
# TB vs. LTBI
counts.brazil.old.TBvsLTBI <- counts.brazil.old.TBvsLTBI[,c(1:10,12,13,14,16,17,11)]
treatments.brazil.old.TBvsLTBI <- c(rep("TB",10),rep("control",6))
treatments.brazil.old.TBvsLTBI.num <- treatments.brazil.old.TBvsLTBI
treatments.brazil.old.TBvsLTBI.num[treatments.brazil.old.TBvsLTBI.num == "TB"] <- 1
treatments.brazil.old.TBvsLTBI.num[treatments.brazil.old.TBvsLTBI.num == "control"] <- 0
age.brazil.old.9 <- c(72,41,19,58,20,15,19,6,51,24,34,59,57,1,4,17,7,24,6,9,5,16,2,7,45)
# demographic
chisq.test(table(treatments.brazil.old.9.num, gender.brazil.old.num))
tmp <- data.frame(gender = gender.brazil.old.num, target = treatments.brazil.old.9.num, age = age.brazil.old.9)
tmp.glm <- glm(target~gender, tmp, family = binomial())
summary(tmp.glm)
tmp.glm <- glm(target~age, tmp, family = binomial())
summary(tmp.glm)
# TB vs. LTBI
gender.brazil.tbvsltbi <- c(0,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1, 1,0,0,0,1)
age.brazil.tbvsltbi <- c(15, 15, 42, 15, 47, 57, 26, 49, 22, 59, 63, 46, 48, 43,45,7,24,6,9,5,16,2,7)
tmp <- data.frame(gender = gender.brazil.tbvsltbi, target = treatments.brazil.TBvs.LTBI.more.num, age = age.brazil.tbvsltbi)
tmp.glm <- glm(target~gender, tmp, family = binomial())
summary(tmp.glm)
tmp.glm <- glm(target~age, tmp, family = binomial())
summary(tmp.glm)
table(gender.brazil.tbvsltbi, treatments.brazil.TBvs.LTBI.more.num)
```
#### Load metadata
```{r}
## brazil
meta.brazil <- read.table("../metadata/Brazil_metadata.txt", sep = "\t", header = TRUE, row.names = 1, stringsAsFactors = FALSE)
meta.brazil$Sample <- rownames(meta.brazil)
# progressors could include SC or not
meta.brazil$Label[meta.brazil$Label == "Control"] <- "control"
meta.brazil$Label.Binary.WithSC <- meta.brazil$Label
meta.brazil$Label.Binary.WithoutSC <- meta.brazil$Label
meta.brazil$Label.Binary.WithSC[meta.brazil$Label != "control"] <- "progressor"
meta.brazil$Label.Binary.WithoutSC[meta.brazil$Label == "P"] <- "progressor"
meta.brazil$Label.Binary.WithoutSC[meta.brazil$Label == "SC"] <- NA
#tibble
meta.brazil <- as.tibble(meta.brazil)
colnames(meta.brazil)[1] <- "Sex"
### #####
#Africa
meta.africa <- read.csv("../metadata/africa_metadata/metadata_africa.csv", header = T, stringsAsFactors = FALSE, row.names = 1)
# remove sample 49
meta.africa <- meta.africa[-49,]
rownames(meta.africa) <- meta.africa$Sample
meta.africa <- as.tibble(meta.africa)
meta.africa.baseline <- meta.africa %>% filter(Sample %in% colnames(counts.africa.baseline))
meta.africa.baseline$D2P <- d2p.africa.baseline[match(meta.africa.baseline$Sample, colnames(counts.africa.baseline))]
meta.africa.baseline$Label[meta.africa.baseline$Label == "case"] <- "progressor"
meta.africa.baseline$batch = "africa"
# cut age into bins
age.vec <- c(meta.brazil$Age, meta.africa.baseline$Age)
# how to cut? 4 bins.
levels.age <- levels(cut(age.vec, breaks = 4))
# ordinal factor
age.vec.factor <- as.factor(as.numeric(cut(age.vec, breaks = 4)))
meta.brazil$Age.Bin <- age.vec.factor[1:nrow(meta.brazil)]
meta.africa.baseline$Age.Bin <- age.vec.factor[(nrow(meta.brazil)+1):length(age.vec.factor)]
# rename meta.brazil Sample name
meta.brazil$Sample[meta.brazil$batch == "old"] <- paste0(meta.brazil$Sample[meta.brazil$batch == "old"], ".old")
# reorder the metadata to counts data
meta.brazil <- meta.brazil[match(colnames(counts.brazil.all), meta.brazil$Sample),]
meta.africa <- meta.africa[match(colnames(counts.africa), meta.africa$Sample),]
meta.africa$Label[meta.africa$Label == "case"] <- "progressor"
meta.africa.baseline <- meta.africa.baseline[match(colnames(counts.africa.baseline), meta.africa.baseline$Sample),]
# new and old brazil metadata
meta.brazil.old <- meta.brazil %>% filter(batch == "old")
meta.brazil.new <- meta.brazil %>% filter(batch == "new")
######### without SC
# num label
meta.brazil.new$Label.Binary.WithSC.num <- meta.brazil.new$Label.Binary.WithSC
meta.brazil.new$Label.Binary.WithSC.num[meta.brazil.new$Label.Binary.WithSC.num == "progressor"] <- 1
meta.brazil.new$Label.Binary.WithSC.num[meta.brazil.new$Label.Binary.WithSC.num == "control"] <- 0
meta.brazil.new$Label.Binary.WithSC.num <- as.numeric(meta.brazil.new$Label.Binary.WithSC.num)
meta.brazil.old$Label.Binary.WithSC.num <- meta.brazil.old$Label.Binary.WithSC
meta.brazil.old$Label.Binary.WithSC.num[meta.brazil.old$Label.Binary.WithSC.num == "progressor"] <- 1
meta.brazil.old$Label.Binary.WithSC.num[meta.brazil.old$Label.Binary.WithSC.num == "control"] <- 0
meta.brazil.old$Label.Binary.WithSC.num <- as.numeric(meta.brazil.old$Label.Binary.WithSC.num)
meta.brazil$Label.Binary.WithSC.num <- meta.brazil$Label.Binary.WithSC
meta.brazil$Label.Binary.WithSC.num[meta.brazil$Label.Binary.WithSC.num == "progressor"] <- 1
meta.brazil$Label.Binary.WithSC.num[meta.brazil$Label.Binary.WithSC.num == "control"] <- 0
meta.brazil$Label.Binary.WithSC.num <- as.numeric(meta.brazil$Label.Binary.WithSC.num)
meta.africa.baseline <- meta.africa.baseline %>% mutate(Label.num = Label)
meta.africa.baseline$Label.num[meta.africa.baseline$Label.num == "progressor"] <- 1
meta.africa.baseline$Label.num[meta.africa.baseline$Label.num == "control"] <- 0
meta.africa.baseline$Label.num <- as.numeric(meta.africa.baseline$Label.num)
### we will only use coding genes for signature, so we need to know which genes are coding genes
genename.dict <- Get_Gene_Mapping_Dict(filter = "hgnc_symbol", gene.name = rownames(counts.brazil.new))
genename.dict <- genename.dict[!duplicated(genename.dict$hgnc_symbol),]
genename.dict <- genename.dict[genename.dict$gene_biotype == "protein_coding",]
### output africa data for Ethel
meta.africa$D2P <- d2p.africa
```
#### DE analysis
```{r message=FALSE}
de.africa.baseline <- DeAnalysis(df = counts.africa.baseline.filtered, treatments = meta.africa.baseline$Label, gender = meta.africa.baseline$Sex, age = "SAME")
de.brazil <- DeAnalysis(df = counts.brazil.old.filtered, treatments = meta.brazil$Label.Binary.WithSC, gender = meta.brazil$Sex)
de.brazil.9 <- DeAnalysis(df = counts.brazil.old.9.filtered, treatments = treatments.brazil.old.9, gender = gender.brazil.old.9)
# DEG in africa.baseline
deg.africa.baseline.5em1 <- GetDEG(de.africa.baseline, 5e-1)
deg.africa.baseline.1em1 <- GetDEG(de.africa.baseline, 1e-1)
deg.africa.baseline.1em2 <- GetDEG(de.africa.baseline, 1e-2)
deg.africa.baseline.1em3 <- GetDEG(de.africa.baseline, 1e-3)
deg.africa.baseline.1em4 <- GetDEG(de.africa.baseline, 1e-4)
deg.africa.baseline.1em5 <- GetDEG(de.africa.baseline, 1e-5)
deg.africa.baseline.1em6 <- GetDEG(de.africa.baseline, 1e-6)
# DEG in brazil.old
deg.brazil.5em1 <- GetDEG(de.brazil, 5e-1)
deg.brazil.1em1 <- GetDEG(de.brazil, 1e-1)
deg.brazil.1em2 <- GetDEG(de.brazil, 1e-2)
deg.brazil.1em3 <- GetDEG(de.brazil, 1e-3)
deg.brazil.1em4 <- GetDEG(de.brazil, 1e-4)
deg.brazil.1em5 <- GetDEG(de.brazil, 1e-5)
deg.brazil.1em6 <- GetDEG(de.brazil, 1e-6)
```
#### Data Cleaning For Africa
```{r}
# Max 5 filter.
counts.africa.baseline.filtered <- MaxFilter(counts.africa.baseline, 5)
# Normalization
counts.africa.baseline.norm <- deseq2_norm_rle(counts.africa.baseline.filtered)
# IQR filter
counts.africa.baseline.IQR <- IQR_Filter(counts.africa.baseline.norm, 0.9, use.ratio = TRUE)
# D2P filter
counts.africa.baseline.D2P <- D2P_Filter(counts.africa.baseline.IQR, meta.africa.baseline$D2P, 0.1)
```
#### Data Cleaning For Brazil
```{r message=FALSE, warning=FALSE}
# brazil
# Max 5 filter.
counts.brazil.old.filtered <- MaxFilter(counts.brazil.old, 5)
# Normalization
counts.brazil.old.norm <- deseq2_norm_rle(counts.brazil.old.filtered)
# Max 5 filter.
counts.brazil.old.TBvsLTBI.filtered <- MaxFilter(counts.brazil.old.TBvsLTBI, 5)
# Normalization
counts.brazil.old.TBvsLTBI.norm <- deseq2_norm_rle(counts.brazil.old.TBvsLTBI.filtered)
##
# Max 5 filter.
counts.brazil.old.9.filtered <- MaxFilter(counts.brazil.old.9, 5)
# Normalization
counts.brazil.old.9.norm <- deseq2_norm_rle(counts.brazil.old.9.filtered)
# Max 5 filter.
counts.brazil.old.TBvsLTBI.more.filtered <- MaxFilter(counts.brazil.old.TBvsLTBI.more, 5)
# Normalization
counts.brazil.old.TBvsLTBI.more.norm <- deseq2_norm_rle(counts.brazil.old.TBvsLTBI.more.filtered)
#####################
### NEW brazil
counts.brazil.all.tb.vs.ltbi <- Cbind_Df(counts.brazil.old.TBvsLTBI.more, counts.brazil.new[,1:12])
# Max 5 filter.
counts.brazil.all.tb.vs.ltbi.filtered <- MaxFilter(counts.brazil.all.tb.vs.ltbi, 5)
# Normalization
counts.brazil.all.tb.vs.ltbi.norm <- deseq2_norm_rle(counts.brazil.all.tb.vs.ltbi.filtered)
counts.brazil.all.tb.vs.ltbi.combat <- Combat_No_Ref(df = counts.brazil.all.tb.vs.ltbi.norm, batch = c(rep("old", 23), rep("new", 12)),first = "old", mean.only = T)
counts.africa.brazil.tb.vs.ltbi.new <- Cbind_Df(counts.africa.baseline.filtered[,-c(34,64)], counts.brazil.all.tb.vs.ltbi.combat$all)
counts.africa.brazil.tb.vs.ltbi.new.norm <- deseq2_norm_rle(counts.africa.brazil.tb.vs.ltbi.new)
counts.africa.brazil.tb.vs.ltbi.new.combat <- Combat_No_Ref(df = counts.africa.brazil.tb.vs.ltbi.new.norm, batch = c(rep("africa", 142), rep("brazil", 35)),first = "africa", mean.only = F)
df.train.tb.vs.ltbi.new = counts.africa.brazil.tb.vs.ltbi.new.combat$a
df.test.tb.vs.ltbi.new = counts.africa.brazil.tb.vs.ltbi.new.combat$b
##### for manuscript
counts.brazil.processed <- cbind(counts.brazil.old, counts.brazil.old.TBvsLTBI.more[,1:14])
# Max 5 filter.
counts.brazil.processed.filtered <- MaxFilter(counts.brazil.processed, 5)
# Normalization
counts.brazil.processed.filtered.norm <- deseq2_norm_rle(counts.brazil.processed.filtered)
#
write.csv(counts.brazil.processed.filtered.norm, "counts_brazil_normalized.csv", quote = FALSE)
```
#### Africa Signature Identification
```{r}
##### Feature Dimension Reduction
# use svaseq to adjust the africa dataset
counts.africa.baseline.norm.sva <- Svaseq_Adjust(counts.africa.baseline.norm, meta.africa.baseline$Label.num)
# IQR filter
counts.africa.baseline.norm.IQR <- IQR_Filter(counts.africa.baseline.norm.sva, 0.8, use.ratio = TRUE)
# D2P filter
counts.africa.baseline.norm.D2P <- D2P_Filter(counts.africa.baseline.norm.IQR, meta.africa.baseline$D2P, 0.2)
# DEG filter
counts.africa.baseline.norm.D2P.deg.1em1 <- counts.africa.baseline.norm.D2P[which(rownames(counts.africa.baseline.norm.D2P) %in% deg.africa.baseline.1em1),]
##### Feature Selection
# select top features based on top LOOCV genes, ranked by average weights from glmnet + xgboost + ranger
signature.list.africa <- Feature_Selection_Wrapper_Multiple_Seeds_One_Round(df.train = counts.africa.baseline.norm.D2P.deg.1em1, label.num.vec = meta.africa.baseline$Label.num, seed.vec = 1:100)
# select top genes from the signature pool
signature.africa <- Get_Average_Top_Features(signature.list.africa)
# use logistic regression to reduce the signature size.
signature.africa <- getSignatureFromMultipleGlmnet(dataFrame = counts.africa.baseline.norm.D2P.deg.1em1[,-c(34,64)][signature.africa,], targetVec = meta.africa.baseline$Label, nfolds = 5, logisticRegression = TRUE, nRun = 100)
# select protein coding gene
signature.africa <- signature.africa[which(signature.africa %in% genename.dict$hgnc_symbol)]
```
#### evaluation
```{r}
### progressor vs. non-progressor
############################
#1. All Data Normalization #
############################
# We need to do normalization with africa, brazil old
counts.africa.brazil.old <- Cbind_Df(counts.africa.baseline.filtered[,-c(34,64)], counts.brazil.old.filtered)
counts.africa.brazil.old.norm <- deseq2_norm_rle(counts.africa.brazil.old)
tmp <- meta.brazil.old[,c(6,7,10,2,1,3,4)]
colnames(tmp)[2] <- "Label"
colnames(tmp)[3] <- "Label.num"
meta.africa.brazil.old <- rbind(meta.africa.baseline[,c(1,2,8,3,4,6,9)], tmp)
meta.africa.brazil.old$source <- c(rep("africa", 142), rep("brazil", 21))
############################
#2. Combat #
############################
counts.africa.brazil <- Combat_No_Ref(df = counts.africa.brazil.old.norm, batch = c(rep("africa", 142), rep("brazil", 21)),first = "africa", mean.only = F)
df.train = counts.africa.brazil$a
df.test = counts.africa.brazil$b
#################################################################
### TB vs. LTBI
############################
#1. All Data Normalization #
############################
# We need to do normalization with africa, brazil old
counts.africa.brazil.old.TBvsLTBI <- Cbind_Df(counts.africa.baseline.filtered[,-c(34,64)], counts.brazil.old.TBvsLTBI.filtered)
counts.africa.brazil.old.TBvsLTBI.norm <- deseq2_norm_rle(counts.africa.brazil.old.TBvsLTBI)
############################
#2. Combat #
############################
counts.africa.brazil.TBvsLTBI <- Combat_No_Ref(df = counts.africa.brazil.old.TBvsLTBI.norm,batch = c(rep("africa", 142), rep("brazil", 16)),first = "africa", mean.only = F)
df.train.2 = counts.africa.brazil.TBvsLTBI$a
df.test.2 = counts.africa.brazil.TBvsLTBI$b
#################################################################
####
#brazil.old.9
counts.africa.brazil.old.9 <- Cbind_Df(counts.africa.baseline.filtered[,-c(34,64)], counts.brazil.old.9.filtered)
counts.africa.brazil.old.9.norm <- deseq2_norm_rle(counts.africa.brazil.old.9)
############################
#2. Combat #
############################
counts.africa.brazil.9 <- Combat_No_Ref(df = counts.africa.brazil.old.9.norm, batch = c(rep("africa", 142), rep("brazil", 25)),first = "africa", mean.only = F)
df.train.9 = counts.africa.brazil.9$a
df.test.9 = counts.africa.brazil.9$b
###########
#brazil.old.TBvsLTBI.more
counts.africa.brazil.old.TBvsLTBI.more <- Cbind_Df(counts.africa.baseline.filtered[,-c(34,64)], counts.brazil.old.TBvsLTBI.more.filtered)
counts.africa.brazil.old.TBvsLTBI.more.norm <- deseq2_norm_rle(counts.africa.brazil.old.TBvsLTBI.more)
############################
#2. Combat #
############################
counts.africa.brazil.old.TBvsLTBI.more.combat <- Combat_No_Ref(df = counts.africa.brazil.old.TBvsLTBI.more.norm, batch = c(rep("africa", 142), rep("brazil", 23)),first = "africa", mean.only = F)
df.train.TBvsLTBI = counts.africa.brazil.old.TBvsLTBI.more.combat$a
df.test.TBvsLTBI = counts.africa.brazil.old.TBvsLTBI.more.combat$b
```