|
| 1 | +import torch |
| 2 | +from torch.autograd import Variable |
| 3 | +import numpy as np |
| 4 | +import random |
| 5 | +from gym_torcs import TorcsEnv |
| 6 | +import argparse |
| 7 | +import collections |
| 8 | + |
| 9 | +from ReplayBuffer import ReplayBuffer |
| 10 | +from ActorNetwork import ActorNetwork |
| 11 | +from CriticNetwork import CriticNetwork |
| 12 | +from OU import OU |
| 13 | + |
| 14 | +state_size = 29 |
| 15 | +action_size = 3 |
| 16 | +LRA = 0.0001 |
| 17 | +LRC = 0.001 |
| 18 | +BUFFER_SIZE = 1000 #to change |
| 19 | +BATCH_SIZE = 32 |
| 20 | +GAMMA = 0.99 |
| 21 | +EXPLORE = 10000 |
| 22 | +epsilon = 1 |
| 23 | +train_indicator = 1 # train or not |
| 24 | +TAU = 0.001 |
| 25 | + |
| 26 | +VISION = False |
| 27 | + |
| 28 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 29 | + |
| 30 | +OU = OU() |
| 31 | + |
| 32 | +actor = ActorNetwork(state_size).to(device) |
| 33 | +critic = CriticNetwork(state_size, action_size).to(device) |
| 34 | +buff = ReplayBuffer(BUFFER_SIZE) |
| 35 | +target_actor = ActorNetwork(state_size).to(device) |
| 36 | +target_critic = CriticNetwork(state_size, action_size).to(device) |
| 37 | + |
| 38 | +criterion_critic = torch.nn.MSELoss(reduction='sum') |
| 39 | + |
| 40 | +optimizer_actor = torch.optim.Adam(actor.parameters(), lr=LRA) |
| 41 | +optimizer_critic = torch.optim.Adam(critic.parameters(), lr=LRC) |
| 42 | + |
| 43 | +#env environment |
| 44 | +env = TorcsEnv(vision=VISION, throttle=True, gear_change=False) |
| 45 | + |
| 46 | +torch.set_default_tensor_type('torch.FloatTensor') |
| 47 | + |
| 48 | +for i in range(2000): |
| 49 | + |
| 50 | + print(str(i) + "-th episode starts") |
| 51 | + |
| 52 | + if np.mod(i, 3) == 0: |
| 53 | + ob = env.reset(relaunch = True) |
| 54 | + else: |
| 55 | + ob = env.reset() |
| 56 | + |
| 57 | + s_t = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm)) |
| 58 | + |
| 59 | + for j in range(1000): |
| 60 | + loss = 0 |
| 61 | + epsilon -= 1.0 / EXPLORE |
| 62 | + a_t = np.zeros([1, action_size]) |
| 63 | + noise_t = np.zeros([1, action_size]) |
| 64 | + |
| 65 | + a_t_original = actor(torch.tensor(s_t.reshape(1, s_t.shape[0]), device=device).float()) |
| 66 | + a_t_original = a_t_original.data.numpy() |
| 67 | + noise_t[0][0] = train_indicator * max(epsilon, 0) * OU.function(a_t_original[0][0], 0.0, 0.60, 0.30) |
| 68 | + noise_t[0][1] = train_indicator * max(epsilon, 0) * OU.function(a_t_original[0][1], 0.5, 1.00, 0.10) |
| 69 | + noise_t[0][2] = train_indicator * max(epsilon, 0) * OU.function(a_t_original[0][2], -0.1, 1.00, 0.05) |
| 70 | + |
| 71 | + a_t[0][0] = a_t_original[0][0] + noise_t[0][0] |
| 72 | + a_t[0][1] = a_t_original[0][1] + noise_t[0][1] |
| 73 | + a_t[0][2] = a_t_original[0][2] + noise_t[0][2] |
| 74 | + |
| 75 | + ob, r_t, done, info = env.step(a_t[0]) |
| 76 | + |
| 77 | + s_t1 = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm)) |
| 78 | + |
| 79 | + #add to replay buffer |
| 80 | + buff.add(s_t, a_t[0], r_t, s_t1, done) |
| 81 | + |
| 82 | + batch = buff.getBatch(BATCH_SIZE) |
| 83 | + |
| 84 | + states = torch.tensor(np.asarray([e[0] for e in batch]), device=device).float() #torch.cat(batch[0]) |
| 85 | + actions = torch.tensor(np.asarray([e[1] for e in batch]), device=device).float() |
| 86 | + rewards = torch.tensor(np.asarray([e[2] for e in batch]), device=device).float() |
| 87 | + new_states = torch.tensor(np.asarray([e[3] for e in batch]), device=device).float() |
| 88 | + dones = np.asarray([e[4] for e in batch]) |
| 89 | + y_t = torch.tensor(np.asarray([e[1] for e in batch]), device=device).float() |
| 90 | + |
| 91 | + #use target network to calculate target_q_value |
| 92 | + target_q_values = target_critic(new_states, target_actor(new_states)) |
| 93 | + |
| 94 | + for k in range(len(batch)): |
| 95 | + if dones[k]: |
| 96 | + y_t[k] = rewards[k] |
| 97 | + else: |
| 98 | + y_t[k] = rewards[k] + GAMMA * target_q_values[k] |
| 99 | + |
| 100 | + if(train_indicator): |
| 101 | + |
| 102 | + #training |
| 103 | + q_values = critic(states, actions) |
| 104 | + loss = criterion_critic(y_t, q_values) |
| 105 | + optimizer_critic.zero_grad() |
| 106 | + loss.backward() ##for param in critic.parameters(): param.grad.data.clamp(-1, 1) |
| 107 | + optimizer_critic.step() |
| 108 | + |
| 109 | + a_for_grad = actor(states) |
| 110 | + a_for_grad.requires_grad_() |
| 111 | + q_values_for_grad = critic(states, a_for_grad) |
| 112 | + critic.zero_grad() |
| 113 | + q_values_for_grad.sum().backward() |
| 114 | + grads = a_for_grad.grad #a_for_grad is not a Variable, Variable input to varibale output? |
| 115 | + |
| 116 | + act = actor(states) |
| 117 | + actor.zero_grad() |
| 118 | + act.sum().backward(grads) |
| 119 | + optimizer_actor.step() |
| 120 | + |
| 121 | + #soft update for target network |
| 122 | + #actor_params = list(actor.parameters()) |
| 123 | + #critic_params = list(critic.parameters()) |
| 124 | + new_actor_state_dict = collections.OrderedDict() |
| 125 | + new_critic_state_dict = collections.OrderedDict() |
| 126 | + for var_name in target_actor.state_dict(): |
| 127 | + new_actor_state_dict[var_name] = TAU * actor.state_dict()[var_name] + (1-TAU) * target_actor.state_dict()[var_name] |
| 128 | + target_actor.load_state_dict(new_actor_state_dict) |
| 129 | + |
| 130 | + for var_name in target_critic.state_dict(): |
| 131 | + new_critic_state_dict[var_name] = TAU * critic.state_dict()[var_name] + (1-TAU) * target_critic.state_dict()[var_name] |
| 132 | + target_critic.load_state_dict(new_critic_state_dict) |
| 133 | + |
| 134 | + s_t = s_t1 |
| 135 | + |
| 136 | + if done: |
| 137 | + break |
| 138 | + |
| 139 | + if np.mod(1, 3) == 0: |
| 140 | + if (train_indicator): |
| 141 | + print("saving model") |
| 142 | + torch.save(actor.state_dict(), 'actormodel.pth') |
| 143 | + torch.save(critic.state_dict(), 'criticmodel.pth') |
| 144 | + |
| 145 | + |
| 146 | +env.end() |
| 147 | +print("Finish.") |
| 148 | + |
| 149 | +#for param in critic.parameters(): param.grad.data.clamp(-1, 1) |
| 150 | + |
0 commit comments