diff --git a/assets/test-notebook.json b/assets/test-notebook.json index e5fa45e..49717a1 100644 --- a/assets/test-notebook.json +++ b/assets/test-notebook.json @@ -1 +1 @@ -{"cell-2":{"out":"\n
[2]
\n[4]
\nview the dataframe
\n\n | Product_Identifier | Supermarket_Identifier | Product_Supermarket_Identifier | Product_Weight | Product_Fat_Content | Product_Shelf_Visibility | Product_Type | Product_Price | Supermarket_Opening_Year | Supermarket _Size | Supermarket_Location_Type | Supermarket_Type | Product_Supermarket_Sales | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | DRA12 | CHUKWUDI010 | DRA12_CHUKWUDI010 | 11.6 | Low Fat | 0.068535039 | Soft Drinks | 357.54 | 2005 | NaN | Cluster 3 | Grocery Store | 709.08 |
1 | DRA12 | CHUKWUDI013 | DRA12_CHUKWUDI013 | 11.6 | Low Fat | 0.040911824 | Soft Drinks | 355.79 | 1994 | High | Cluster 3 | Supermarket Type1 | 6381.69 |
2 | DRA12 | CHUKWUDI017 | DRA12_CHUKWUDI017 | 11.6 | Low Fat | 0.041177505 | Soft Drinks | 350.79 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 6381.69 |
3 | DRA12 | CHUKWUDI018 | DRA12_CHUKWUDI018 | 11.6 | Low Fat | 0.041112694 | Soft Drinks | 355.04 | 2016 | Medium | Cluster 3 | Supermarket Type2 | 2127.23 |
4 | DRA12 | CHUKWUDI035 | DRA12_CHUKWUDI035 | 11.6 | Ultra Low fat | 0 | Soft Drinks | 354.79 | 2011 | Small | Cluster 2 | Supermarket Type1 | 2481.77 |
[6]
\nUnderstanding the numerical columns in the dataset.
\n\n | Product_Shelf_Visibility | Product_Price | Supermarket_Opening_Year | Product_Supermarket_Sales | \n
---|---|---|---|---|
count | 4990 | 4990 | 4990 | 4990 |
mean | 0.066916 | 391.803772 | 2004.783447 | 6103.52002 |
std | 0.053058 | 119.378259 | 8.283151 | 4447.333835 |
min | 0 | 78.730003 | 1992 | 83.230003 |
median | 0.053564 | 393.86 | 2006 | 5374.675 |
max | 0.328391 | 667.219971 | 2016 | 32717.410156 |
variance | 0.002815 | 14251.168763 | 68.610594 | 19778778.23941 |
[10]
\nin order to see the columns and their types together. Let create a Series and then set the index as the column names and the values to be the tyoe
\n\n | 0 | \n
---|---|
Product_Identifier | string |
Supermarket_Identifier | string |
Product_Supermarket_Identifier | string |
Product_Weight | string |
Product_Fat_Content | string |
Product_Shelf_Visibility | float32 |
Product_Type | string |
Product_Price | float32 |
Supermarket_Opening_Year | int32 |
Supermarket _Size | string |
Supermarket_Location_Type | string |
Supermarket_Type | string |
Product_Supermarket_Sales | float32 |
\n | Product_Weight | Product_Fat_Content | Product_Shelf_Visibility | Product_Type | Product_Price | Supermarket_Opening_Year | Supermarket _Size | Supermarket_Location_Type | Supermarket_Type | Product_Supermarket_Sales | \n
---|---|---|---|---|---|---|---|---|---|---|
0 | 11.6 | Low Fat | 0.068535039 | Soft Drinks | 357.54 | 2005 | NaN | Cluster 3 | Grocery Store | 709.08 |
1 | 11.6 | Low Fat | 0.040911824 | Soft Drinks | 355.79 | 1994 | High | Cluster 3 | Supermarket Type1 | 6381.69 |
2 | 11.6 | Low Fat | 0.041177505 | Soft Drinks | 350.79 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 6381.69 |
3 | 11.6 | Low Fat | 0.041112694 | Soft Drinks | 355.04 | 2016 | Medium | Cluster 3 | Supermarket Type2 | 2127.23 |
4 | 11.6 | Ultra Low fat | 0 | Soft Drinks | 354.79 | 2011 | Small | Cluster 2 | Supermarket Type1 | 2481.77 |
[2]
\n[4]
\nview the dataframe
\n\n | Product_Identifier | Supermarket_Identifier | Product_Supermarket_Identifier | Product_Weight | Product_Fat_Content | Product_Shelf_Visibility | Product_Type | Product_Price | Supermarket_Opening_Year | Supermarket _Size | Supermarket_Location_Type | Supermarket_Type | Product_Supermarket_Sales | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | DRA12 | CHUKWUDI010 | DRA12_CHUKWUDI010 | 11.6 | Low Fat | 0.068535039 | Soft Drinks | 357.54 | 2005 | NaN | Cluster 3 | Grocery Store | 709.08 |
1 | DRA12 | CHUKWUDI013 | DRA12_CHUKWUDI013 | 11.6 | Low Fat | 0.040911824 | Soft Drinks | 355.79 | 1994 | High | Cluster 3 | Supermarket Type1 | 6381.69 |
2 | DRA12 | CHUKWUDI017 | DRA12_CHUKWUDI017 | 11.6 | Low Fat | 0.041177505 | Soft Drinks | 350.79 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 6381.69 |
3 | DRA12 | CHUKWUDI018 | DRA12_CHUKWUDI018 | 11.6 | Low Fat | 0.041112694 | Soft Drinks | 355.04 | 2016 | Medium | Cluster 3 | Supermarket Type2 | 2127.23 |
4 | DRA12 | CHUKWUDI035 | DRA12_CHUKWUDI035 | 11.6 | Ultra Low fat | 0 | Soft Drinks | 354.79 | 2011 | Small | Cluster 2 | Supermarket Type1 | 2481.77 |
5 | DRA12 | CHUKWUDI045 | DRA12_CHUKWUDI045 | 11.6 | Low Fat | 0 | Soft Drinks | 354.04 | 2009 | NaN | Cluster 2 | Supermarket Type1 | 9572.54 |
6 | DRA24 | CHUKWUDI010 | DRA24_CHUKWUDI010 | 19.35 | Normal Fat | 0.066831682 | Soft Drinks | 409.72 | 2005 | NaN | Cluster 3 | Grocery Store | 818.93 |
7 | DRA24 | CHUKWUDI013 | DRA24_CHUKWUDI013 | 19.35 | Normal Fat | 0.039895009 | Soft Drinks | 406.22 | 1994 | High | Cluster 3 | Supermarket Type1 | 11055.61 |
8 | DRA24 | CHUKWUDI017 | DRA24_CHUKWUDI017 | 19.35 | Normal Fat | 0.040154087 | Soft Drinks | 411.72 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 2866.27 |
9 | DRA24 | CHUKWUDI019 | DRA24_CHUKWUDI019 | NaN | Normal Fat | 0.069909188 | Soft Drinks | 408.22 | 1992 | Small | Cluster 1 | Grocery Store | 1228.4 |
10 | DRA24 | CHUKWUDI027 | DRA24_CHUKWUDI027 | NaN | Normal Fat | 0.039734882 | Soft Drinks | 414.47 | 1992 | Medium | Cluster 3 | Supermarket Type3 | 12284.01 |
11 | DRA24 | CHUKWUDI035 | DRA24_CHUKWUDI035 | 19.35 | Normal Fat | 0.039920687 | Soft Drinks | 408.47 | 2011 | Small | Cluster 2 | Supermarket Type1 | 8598.81 |
12 | DRA24 | CHUKWUDI049 | DRA24_CHUKWUDI049 | 19.35 | Normal Fat | 0.039990314 | Soft Drinks | 412.72 | 2006 | Medium | Cluster 1 | Supermarket Type1 | 2456.8 |
13 | DRA59 | CHUKWUDI017 | DRA59_CHUKWUDI017 | 8.27 | Normal Fat | 0 | Soft Drinks | 458.23 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 6015.5 |
14 | DRA59 | CHUKWUDI018 | DRA59_CHUKWUDI018 | 8.27 | Normal Fat | 0.128449055 | Soft Drinks | 466.48 | 2016 | Medium | Cluster 3 | Supermarket Type2 | 11105.54 |
15 | DRA59 | CHUKWUDI019 | DRA59_CHUKWUDI019 | NaN | Normal Fat | 0.223985293 | Soft Drinks | 465.73 | 1992 | Small | Cluster 1 | Grocery Store | 1388.19 |
16 | DRA59 | CHUKWUDI027 | DRA59_CHUKWUDI027 | NaN | Normal Fat | 0.127308434 | Soft Drinks | 466.73 | 1992 | Medium | Cluster 3 | Supermarket Type3 | 17583.78 |
17 | DRA59 | CHUKWUDI046 | DRA59_CHUKWUDI046 | 8.27 | Normal Fat | 0.127927931 | Soft Drinks | 462.23 | 2004 | Small | Cluster 1 | Supermarket Type1 | 11105.54 |
18 | DRA59 | CHUKWUDI049 | DRA59_CHUKWUDI049 | 8.27 | Normal Fat | 0.128126825 | Soft Drinks | 459.23 | 2006 | Medium | Cluster 1 | Supermarket Type1 | 3239.12 |
19 | DRB01 | CHUKWUDI027 | DRB01_CHUKWUDI027 | NaN | Low Fat | 0.081841136 | Soft Drinks | 475.13 | 1992 | Medium | Cluster 3 | Supermarket Type3 | 1423.15 |
[6]
\nUnderstanding the numerical columns in the dataset.
\n\n | Product_Shelf_Visibility | Product_Price | Supermarket_Opening_Year | Product_Supermarket_Sales | \n
---|---|---|---|---|
count | 4990 | 4990 | 4990 | 4990 |
mean | 0.066916 | 391.803772 | 2004.783447 | 6103.52002 |
std | 0.053058 | 119.378259 | 8.283151 | 4447.333835 |
min | 0 | 78.730003 | 1992 | 83.230003 |
median | 0.053564 | 393.86 | 2006 | 5374.675 |
max | 0.328391 | 667.219971 | 2016 | 32717.410156 |
variance | 0.002815 | 14251.168763 | 68.610594 | 19778778.23941 |
[10]
\nin order to see the columns and their types together. Let create a Series and then set the index as the column names and the values to be the tyoe
\n\n | 0 | \n
---|---|
Product_Identifier | string |
Supermarket_Identifier | string |
Product_Supermarket_Identifier | string |
Product_Weight | string |
Product_Fat_Content | string |
Product_Shelf_Visibility | float32 |
Product_Type | string |
Product_Price | float32 |
Supermarket_Opening_Year | int32 |
Supermarket _Size | string |
Supermarket_Location_Type | string |
Supermarket_Type | string |
Product_Supermarket_Sales | float32 |
\n | Product_Weight | Product_Fat_Content | Product_Shelf_Visibility | Product_Type | Product_Price | Supermarket_Opening_Year | Supermarket _Size | Supermarket_Location_Type | Supermarket_Type | Product_Supermarket_Sales | \n
---|---|---|---|---|---|---|---|---|---|---|
0 | 11.6 | Low Fat | 0.068535039 | Soft Drinks | 357.54 | 2005 | NaN | Cluster 3 | Grocery Store | 709.08 |
1 | 11.6 | Low Fat | 0.040911824 | Soft Drinks | 355.79 | 1994 | High | Cluster 3 | Supermarket Type1 | 6381.69 |
2 | 11.6 | Low Fat | 0.041177505 | Soft Drinks | 350.79 | 2014 | NaN | Cluster 2 | Supermarket Type1 | 6381.69 |
3 | 11.6 | Low Fat | 0.041112694 | Soft Drinks | 355.04 | 2016 | Medium | Cluster 3 | Supermarket Type2 | 2127.23 |
4 | 11.6 | Ultra Low fat | 0 | Soft Drinks | 354.79 | 2011 | Small | Cluster 2 | Supermarket Type1 | 2481.77 |