-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gcn.py
267 lines (236 loc) · 12.8 KB
/
train_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# this file is based on code publicly available at
# https://github.com/bearpaw/pytorch-classification
# written by Wei Yang.
import setGPU
import argparse
import os
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from datasets import get_dataset, DATASETS
from architectures import ARCHITECTURES, robust_clip, get_gcn
from torch.optim import Adam, Optimizer
from torch.optim.lr_scheduler import StepLR
import time
import datetime
from torchvision.transforms import Resize
from torch_geometric.data import Data
from train_utils import AverageMeter, accuracy, init_logfile, log
torch.set_float32_matmul_precision('high')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', default='cifar10', type=str, choices=DATASETS)
parser.add_argument('--arch', default='ViT-L/14', type=str, choices=ARCHITECTURES,
help='the arch for clip')
parser.add_argument('--outdir', default='logs', type=str, help='folder to save model and training log)')
parser.add_argument('--knowledge_path', default='cifar10_predicate_knowledge_top10', type=str, help='the json storing the knowledge')
parser.add_argument('--suffix', default='', type=str, help='file suffix')
parser.add_argument('--eta', default=5.0, type=float,
help='the weight for the classification loss')
parser.add_argument('--train_main', default=False, action='store_true',
help='train the weight for the main predicate or not')
parser.add_argument('--attention', default=False, action='store_true',
help='using attention')
parser.add_argument('--classifier', default=False, action='store_true',
help='using sota classifier')
parser.add_argument('--mode', default='sample', type=str, choices=['sample', 'approx'],
help='the mode for M-step')
parser.add_argument('--pesudo', default=False, action='store_true',
help='pesudo_training')
parser.add_argument('--resume', default=False, action='store_true',
help='continue training')
parser.add_argument('--percent', default=1.0, type=float,
help='how many percent of the input is true')
parser.add_argument('--sample_num', default=50, type=int, metavar='N',
help='the number of samples for EM-step')
parser.add_argument('--embedding_dim', default=512, type=int, metavar='N',
help='the embedding dim for predicates')
parser.add_argument('--hidden_dim', default=512, type=int, metavar='N',
help='the hidden dim of GCN')
parser.add_argument('--workers', default=4, type=int, metavar='N')
parser.add_argument('--epochs', default=40, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=500, type=int, metavar='N',
help='batchsize (default: 500)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--weight-decay', '--wd', default=5e-5, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=1, type=int,
metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
def main():
if args.pesudo:
outdir = os.path.join(args.outdir, f'{args.dataset}/simulated_training/{args.knowledge_path}/{args.arch.replace("/","-")}/train_main_{args.train_main}_attention_{args.attention}_mode_{args.mode}_eta_{args.eta}_embedding_dim_{args.embedding_dim}_hidden_dim_{args.hidden_dim}_noise_sd_{args.noise_sd}_percent_{args.percent}_classifier_{args.classifier}{args.suffix}')
else:
outdir = os.path.join(args.outdir, f'{args.dataset}/real_training/{args.knowledge_path}/{args.arch.replace("/","-")}/train_main_{args.train_main}_attention_{args.attention}_mode_{args.mode}_eta_{args.eta}_embedding_dim_{args.embedding_dim}_hidden_dim_{args.hidden_dim}_noise_sd_{args.noise_sd}_classifier_{args.classifier}{args.suffix}')
if not os.path.exists(outdir):
os.makedirs(outdir)
train_dataset = get_dataset(args.dataset, 'train')
test_dataset = get_dataset(args.dataset, 'test')
pin_memory = (args.dataset == "imagenet")
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
clip_model = robust_clip(args.arch, args.dataset, reasoning = True, knowledge_path = args.knowledge_path, use_classifier = args.classifier)
clip_model.eval()
gcn_model = get_gcn(args.dataset, args.knowledge_path, args.eta, args.sample_num, args.embedding_dim, args.hidden_dim, args.train_main, args.attention, args.mode)
logfilename = os.path.join(outdir, 'log.txt')
init_logfile(logfilename, "epoch\ttime\tlr\ttrain loss\ttrain acc\ttestloss\ttest acc")
# separate out the parameters
# w_params = [params for name, params in gcn_model.named_parameters() if name in ['w', 'edge_weight']]
# base_params = [params for name, params in gcn_model.named_parameters() if name not in ['w', 'edge_weight']]
# # create a list of parameter groups
# param_groups = [{'params': base_params, 'lr': args.lr, 'weight_decay': args.weight_decay},
# {'params': w_params, 'lr': args.lr * 100, 'weight_decay': args.weight_decay}]
# # pass these parameter groups to the optimizer
# optimizer = Adam(param_groups)
optimizer = Adam(gcn_model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = StepLR(optimizer, step_size=args.lr_step_size, gamma=args.gamma)
if args.resume:
checkpoint = torch.load(os.path.join(outdir, 'checkpoint.pth.tar'))
begin = checkpoint['epoch']
gcn_model.load_state_dict(checkpoint['gcn_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
begin = 0
best_test_acc = 0.0
for epoch in range(begin, args.epochs):
before = time.time()
train_loss, train_acc = train(train_loader, args.pesudo, args.percent, clip_model, gcn_model, optimizer, epoch, args.noise_sd)
test_loss, test_acc = test(test_loader, clip_model, gcn_model, optimizer, epoch, args.noise_sd)
after = time.time()
scheduler.step()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, str(datetime.timedelta(seconds=(after - before))),
scheduler.get_last_lr()[0], train_loss, train_acc, test_loss, test_acc))
# Only save the model if the current test accuracy is greater than the best one seen so far
if test_acc > best_test_acc:
best_test_acc = test_acc
torch.save({
'epoch': epoch + 1,
'dataset': args.dataset,
'knowledge_path': args.knowledge_path,
'train_main': args.train_main,
'attention': args.attention,
'mode': args.mode,
'eta': args.eta,
'sample_num': args.sample_num,
'embedding_dim': args.embedding_dim,
'hidden_dim': args.hidden_dim,
'clip_arch': args.arch,
'classifier': args.classifier,
'gcn_state_dict': gcn_model.state_dict(),
'optimizer': optimizer.state_dict(),
}, os.path.join(outdir, 'checkpoint.pth.tar'))
torch.save({
'epoch': epoch + 1,
'dataset': args.dataset,
'knowledge_path': args.knowledge_path,
'train_main': args.train_main,
'attention': args.attention,
'mode': args.mode,
'eta': args.eta,
'sample_num': args.sample_num,
'embedding_dim': args.embedding_dim,
'hidden_dim': args.hidden_dim,
'clip_arch': args.arch,
'classifier': args.classifier,
'gcn_state_dict': gcn_model.state_dict(),
'optimizer': optimizer.state_dict(),
}, os.path.join(outdir, 'last_checkpoint.pth.tar'))
def train(loader: DataLoader, pesudo: bool, percent: float, clip_model: torch.nn.Module, gcn_model: torch.nn.Module, optimizer: Optimizer, epoch: int, noise_sd: float):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
gcn_model.train()
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
if pesudo:
confidence, targets = gcn_model.get_simulated_input(inputs.shape[0], percent)
confidence = confidence.cuda()
targets = targets.cuda()
else:
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
inputs += torch.randn_like(inputs, device='cuda') * noise_sd
# compute output
confidence = clip_model(inputs, only_main = False)
outputs, loss = gcn_model.E_step(confidence, targets)
# measure accuracy and record loss
main_num = gcn_model.main_num
acc1, acc5 = accuracy(outputs[:, :main_num], targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
gcn_model.w.grad = -gcn_model.M_step(confidence)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return (losses.avg, top1.avg)
def test(loader: DataLoader, clip_model: torch.nn.Module, gcn_model: torch.nn.Module, optimizer: Optimizer, epoch: int, noise_sd: float):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to eval mode
gcn_model.eval()
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
inputs = inputs + torch.randn_like(inputs, device='cuda') * noise_sd
confidence = clip_model(inputs, only_main = False)
# compute output
outputs, loss = gcn_model.E_step(confidence, targets)
# measure accuracy and record loss
main_num = gcn_model.main_num
acc1, acc5 = accuracy(outputs[:, :main_num], targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return (losses.avg, top1.avg)
if __name__ == "__main__":
main()