Skip to content

Latest commit

 

History

History
executable file
·
28 lines (22 loc) · 1000 Bytes

File metadata and controls

executable file
·
28 lines (22 loc) · 1000 Bytes

题目

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:

  1. The number at the ith position is divisible by i.
  2. i is divisible by the number at the ith position.

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation: 
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

Note:

  1. N is a positive integer and will not exceed 15.

解题思路

见程序注释