-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransformer_vq.py
446 lines (379 loc) · 16.7 KB
/
transformer_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import math
import functools
import tensorflow as tf
from tensorflow.python.training import distribution_strategy_context
import commons
import transformer
import bleu
import beam_search
def init_vq_bottleneck(bottleneck_size, hidden_size, mean_only=False):
"""Get lookup table for VQ bottleneck."""
means = tf.get_variable(
name="means",
shape=[bottleneck_size, hidden_size],
initializer=tf.initializers.variance_scaling(distribution="uniform"))
if not mean_only:
ema_count = tf.get_variable(
name="ema_count",
shape=[bottleneck_size],
initializer=tf.constant_initializer(0),
trainable=False)
ema_means = tf.get_variable(
name="ema_means",
initializer=means.initialized_value(),
trainable=False)
else:
ema_count = None
ema_means = None
return means, ema_means, ema_count
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_sg = tf.stop_gradient(x)
x_norm_sq = tf.reduce_sum(tf.square(x_sg), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x_sg, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind in ["em" ,"mog"]:
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
if hparams.bottleneck_kind == "mog":
m_shape = [tf.to_float(x) for x in commons.shape_list(means)]
logp = -tf.log(m_shape[0]) - .5 * tf.log(2 * math.pi) * m_shape[1] + tf.reduce_logsumexp(-.5 * dist, -1)
e_loss -= hparams.gamma * tf.reduce_mean(logp)
return x_means_hot, e_loss
def vq_discrete_bottleneck(x, hparams):
"""Simple vector quantized discrete bottleneck."""
bottleneck_size = 2**hparams.bottleneck_bits
x_shape = commons.shape_list(x)
x = tf.reshape(x, [-1, hparams.hidden_size])
x_means_hot, e_loss = vq_nearest_neighbor(
x, hparams)
if hparams.bottleneck_kind == "mog":
loss = hparams.beta * e_loss
else:
tf.logging.info("Using EMA with beta = {}".format(hparams.beta))
means, ema_means, ema_count = (hparams.means, hparams.ema_means,
hparams.ema_count)
# Update the ema variables
updated_ema_count = commons.assign_moving_average(
ema_count,
tf.reduce_sum(x_means_hot, axis=0),
hparams.decay,
zero_debias=False)
dw = tf.matmul(x_means_hot, x, transpose_a=True)
updated_ema_means = commons.assign_moving_average(
ema_means, dw, hparams.decay, zero_debias=False)
n = tf.reduce_sum(updated_ema_count, axis=-1, keepdims=True)
updated_ema_count = (
(updated_ema_count + hparams.epsilon) /
(n + bottleneck_size * hparams.epsilon) * n)
# pylint: disable=g-no-augmented-assignment
updated_ema_means = updated_ema_means / tf.expand_dims(
updated_ema_count, axis=-1)
# pylint: enable=g-no-augmented-assignment
with tf.control_dependencies([e_loss]):
# distribution_strategy
def update_fn(v, value):
return tf.assign(v, value)
tower_context = distribution_strategy_context.get_tower_context()
if tower_context:
def merge_fn(strategy, v, value):
value = strategy.reduce(
tf.VariableAggregation.MEAN, value, v)
return strategy.update(v, update_fn, value)
update_means = tower_context.merge_call(merge_fn, means, updated_ema_means)
else:
strategy = distribution_strategy_context.get_cross_tower_context()
update_means = strategy.update(means, update_fn, updated_ema_means)
with tf.control_dependencies([update_means]):
loss = hparams.beta * e_loss
discrete = tf.reshape(x_means_hot, x_shape[:-1] + [bottleneck_size])
return discrete, loss
def vq_discrete_unbottleneck(x, hparams):
"""Simple undiscretization from vector quantized representation."""
x_shape = commons.shape_list(x)
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_flat = tf.reshape(x, [-1, bottleneck_size])
result = tf.matmul(x_flat, means)
result = tf.reshape(result, x_shape[:-1] + [hparams.hidden_size])
return result
def residual_conv(x, repeat, k, hparams, name, reuse=None):
"""A stack of convolution blocks with residual connections."""
with tf.variable_scope(name, reuse=reuse):
dilations_and_kernels = [(1, k) for _ in range(3)]
for i in range(repeat):
with tf.variable_scope("repeat_%d" % i):
y = commons.conv_block(
commons.layer_norm(x, name="lnorm"),
hparams.hidden_size,
dilations_and_kernels,
padding="SAME",
name="residual_conv")
y = tf.nn.dropout(y, 1.0 - hparams.layer_prepostprocess_dropout)
x += y
return x
def compress(x, hparams, name):
"""Compress."""
with tf.variable_scope(name):
# Run compression by strided convs.
cur = x
k1 = 3
k2 = 2
cur = residual_conv(cur, hparams.num_compress_steps, k1, hparams, "rc")
for i in range(hparams.num_compress_steps):
cur = commons.conv_block(
cur,
hparams.hidden_size, [(1, k2)],
strides=k2,
name="compress_%d" % i)
return cur
def decompress_step(source, hparams, first_relu, name):
"""Decompression function."""
with tf.variable_scope(name):
shape = commons.shape_list(source)
multiplier = 2
kernel = 1
thicker = commons.conv_block(
source,
hparams.hidden_size * multiplier, [(1, kernel)],
first_relu=first_relu,
name="decompress_conv")
return tf.reshape(thicker, [shape[0], shape[1] * 2, hparams.hidden_size])
def encode(x, hparams, name):
"""Transformer preparations and encoder."""
with tf.variable_scope(name):
(encoder_input, encoder_self_attention_bias,
ed) = transformer.transformer_prepare_encoder(x, hparams)
encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.layer_prepostprocess_dropout)
return transformer.transformer_encoder(
encoder_input, encoder_self_attention_bias, hparams), ed
def decode_transformer(encoder_output, encoder_decoder_attention_bias, targets,
hparams, name):
"""Original Transformer decoder."""
with tf.variable_scope(name):
decoder_input, decoder_self_bias = (
transformer.transformer_prepare_decoder(targets, hparams))
decoder_input = tf.nn.dropout(decoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
decoder_output = transformer.transformer_decoder(
decoder_input, encoder_output, decoder_self_bias,
encoder_decoder_attention_bias, hparams)
return decoder_output
def get_latent_pred_loss(latents_pred, latents_discrete_hot, hparams):
"""Latent prediction and loss."""
latents_logits = tf.layers.dense(
latents_pred, 2**hparams.bottleneck_bits, name="extra_logits")
loss = tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.stop_gradient(latents_discrete_hot), logits=latents_logits)
return loss
def ae_latent_sample_beam(latents_dense_in, inputs, ed, embed, hparams):
"""Sample from the latent space in the autoencoder."""
def symbols_to_logits_fn(ids):
"""Go from ids to logits."""
latents_discrete = tf.pad(ids[:, 1:], [[0, 0], [0, 1]]) # prepare to be right-shifted in 'decode_transformer'
#latents_discrete = tf.Print(latents_discrete, [tf.shape(latents_discrete), latents_discrete])
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
latents_dense = embed(
tf.one_hot(latents_discrete, depth=2**hparams.bottleneck_bits))
latents_pred = decode_transformer(inputs, ed, latents_dense, hparams,
"extra")
logits = tf.layers.dense(
latents_pred, 2**hparams.bottleneck_bits, name="extra_logits")
current_output_position = commons.shape_list(ids)[1] - 1
logits = logits[:, current_output_position, :]
return logits
initial_ids = tf.zeros([tf.shape(latents_dense_in)[0]], dtype=tf.int32)
length = tf.shape(latents_dense_in)[1]
ids, _, _ = beam_search.beam_search(
symbols_to_logits_fn,
initial_ids,
beam_size=1,
decode_length=length,
vocab_size=2**hparams.bottleneck_bits,
alpha=0.0,
eos_id=-1,
stop_early=False)
res = ids[:, 0, :] # Pick first beam.
return res[:, 1:] # Remove the added all-zeros from ids.
def ae_transformer_internal(inputs, targets, hparams, mode, cache=None):
"""Main step used for training."""
# Encoder.
inputs, ed = encode(inputs, hparams, "input_enc")
# Autoencoding.
losses = {"extra": tf.constant(0.0), "latent_pred": tf.constant(0.0)}
max_targets_len_from_inputs = tf.concat([inputs, inputs], axis=1)
targets, _ = commons.pad_to_same_length(
targets,
max_targets_len_from_inputs,
final_length_divisible_by=2**hparams.num_compress_steps)
targets_c = compress(targets, hparams, "compress")
if mode != tf.estimator.ModeKeys.PREDICT:
# Compress and bottleneck.
latents_discrete_hot, extra_loss = vq_discrete_bottleneck(
x=targets_c, hparams=hparams)
latents_dense = vq_discrete_unbottleneck(
latents_discrete_hot, hparams=hparams)
latents_dense = targets_c + tf.stop_gradient(latents_dense - targets_c)
latents_discrete = tf.argmax(latents_discrete_hot, axis=-1)
tf.summary.histogram("codes", latents_discrete)
losses["extra"] = extra_loss
# Extra loss predicting latent code from input.
latents_pred = decode_transformer(inputs, ed, latents_dense, hparams,
"extra")
latent_pred_loss = get_latent_pred_loss(latents_pred, latents_discrete_hot,
hparams)
losses["latent_pred"] = tf.reduce_mean(latent_pred_loss)
else:
latent_len = commons.shape_list(targets_c)[1]
embed = functools.partial(vq_discrete_unbottleneck, hparams=hparams)
latents_dense = tf.zeros_like(targets_c)
if cache is None:
cache = ae_latent_sample_beam(latents_dense, inputs, ed, embed,
hparams)
cache_hot = tf.one_hot(cache, depth=2**hparams.bottleneck_bits)
latents_dense = embed(cache_hot)
# Postprocess
d = latents_dense
d = commons.add_timing_signal_1d(d)
# Decompressing the dense latents
for i in range(hparams.num_compress_steps):
j = hparams.num_compress_steps - i - 1
d = residual_conv(d, 1, 3, hparams, "decompress_rc_%d" % j)
d = decompress_step(d, hparams, i > 0, "decompress_%d" % j)
if hparams.shallow_decoder:
res = tf.layers.conv1d(d, hparams.hidden_size, 3, padding="same", name="decoder")
else:
masking = commons.inverse_lin_decay(hparams.mask_startup_steps)
masking *= commons.inverse_exp_decay(
hparams.mask_startup_steps // 4) # Not much at start.
masking = tf.minimum(tf.maximum(masking, 0.0), 1.0)
tf.summary.scalar('masking', masking)
if mode == tf.estimator.ModeKeys.PREDICT:
masking = 1.0
mask = tf.less(masking,
tf.random_uniform(commons.shape_list(targets)[:-1]))
mask = tf.expand_dims(tf.to_float(mask), -1)
# targets is always [batch, length, depth]
targets = mask * targets + (1.0 - mask) * d
res = decode_transformer(inputs, ed, targets, hparams, "decoder")
latent_time = tf.less(hparams.mask_startup_steps,
tf.to_int32(tf.train.get_global_step()))
losses["latent_pred"] *= tf.to_float(latent_time)
return res, losses, cache
class TransformerNAT():
"""Nonautoregressive Transformer from https://arxiv.org/abs/1805.11063."""
def __init__(self, hparams, mode):
self._hparams = hparams
self.mode = mode
# lookup tables
means, ema_means, ema_count = init_vq_bottleneck(
2**self._hparams.bottleneck_bits, self._hparams.hidden_size,
self._hparams.bottleneck_kind=='mog')
self._hparams.means = means
self._hparams.ema_means = ema_means
self._hparams.ema_count = ema_count
def body(self, features):
inputs = features["inputs"] if "inputs" in features else None
reuse = "cache_raw" in features
with tf.variable_scope('body', reuse=reuse):
res, loss, _ = ae_transformer_internal(
inputs, features["targets"],
self._hparams, self.mode, features.get("cache_raw", None))
return res, loss
#def prepare_features_for_infer(self, features):
# batch_size = self._decode_hparams.batch_size
# inputs = tf.zeros([batch_size, 1, 1, self._hparams.hidden_size])
# inputs = inputs if "inputs" in features else None
# targets = tf.zeros([batch_size, 1, 1, self._hparams.hidden_size])
# with tf.variable_scope("transformer_vqvae/body"):
# _, _, cache = ae_transformer_internal(
# inputs, targets, self._hparams, tf.estimator.ModeKeys.PREDICT)
# features["cache_raw"] = cache
def infer(self, features):
"""Produce predictions from the model."""
batch_size = commons.shape_list(features["inputs"])[0]
length = commons.shape_list(features["inputs"])[1]
target_length = tf.to_int32(2.0 * tf.to_float(length))
initial_output = tf.zeros((batch_size, target_length, self._hparams.hidden_size), dtype=tf.float32)
features["targets"] = initial_output
decoder_outputs, _ = self.body(features) # pylint: disable=not-callable
return decoder_outputs
def build_model_fn(hparams):
def model_fn(features, labels, mode):
with tf.variable_scope("transformer_vqvae",
initializer=tf.variance_scaling_initializer(hparams.initializer_gain, mode="fan_avg", distribution="uniform")):
if mode != tf.estimator.ModeKeys.TRAIN:
for key in hparams.keys():
if key.endswith("dropout"):
setattr(hparams, key, 0.0)
with tf.variable_scope("embeddings",
initializer=tf.random_normal_initializer(0.0, hparams.hidden_size**-0.5)):
source_embeddings = tf.get_variable(
"source_embeddings", [len(hparams.source_vocab), hparams.hidden_size], tf.float32)
if hparams.shared_embedding:
target_embeddings = source_embeddings
else:
target_embeddings = tf.get_variable(
"target_embeddings", [len(hparams.target_vocab), hparams.hidden_size], tf.float32)
encoder_input_layer = commons.input_layer(source_embeddings, hparams)
decoder_input_layer = commons.input_layer(target_embeddings, hparams)
output_layer = tf.layers.Dense(len(hparams.target_vocab), use_bias=False, name="output")
# create model
x_enc = encoder_input_layer(features["sources"])
model = TransformerNAT(hparams, mode)
# decode
if mode != tf.estimator.ModeKeys.PREDICT:
x_dec = decoder_input_layer(features["targets"])
decoder_outputs, losses = model.body(features={'inputs': x_enc, 'targets': x_dec})
logits = output_layer(decoder_outputs)
predictions = tf.argmax(logits, -1)
tgt_len = commons.shape_list(features["targets"])[1]
losses["cross_entropy"] = commons.compute_loss(logits[:,:tgt_len], features["targets"])
# losses
loss = 0.
for k, l in losses.items():
tf.summary.scalar(k, l)
loss += l
else:
decoder_outputs = model.infer(features={'inputs': x_enc})
logits = output_layer(decoder_outputs)
predictions = tf.argmax(logits, -1)
loss = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = commons.get_train_op(loss, hparams)
else:
train_op = None
if mode == tf.estimator.ModeKeys.EVAL:
# Names tensors to use in the printing tensor hook.
targets = tf.identity(features["targets"], "targets")
predictions = tf.identity(predictions, "predictions")
bleu_score = bleu.bleu_score(predictions, targets)
eval_metrics = {"metrics/approx_bleu_score": tf.metrics.mean(bleu_score)}
# Summaries
eval_summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir= os.path.join(hparams.model_dir, "eval"),
summary_op=tf.summary.merge_all())
eval_summary_hooks = [eval_summary_hook]
else:
eval_metrics = None
eval_summary_hooks = None
return tf.estimator.EstimatorSpec(
mode,
predictions=predictions,
loss=loss,
eval_metric_ops=eval_metrics,
evaluation_hooks=eval_summary_hooks,
train_op=train_op)
return model_fn