forked from hectorgon/perceptual-diff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Metric.cpp
328 lines (284 loc) · 9.82 KB
/
Metric.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
Metric
Copyright (C) 2006 Yangli Hector Yee
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <cstdio>
#include "Metric.h"
#include "CompareArgs.h"
#include "RGBAImage.h"
#include "LPyramid.h"
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265f
#endif
/*
* Given the adaptation luminance, this function returns the
* threshold of visibility in cd per m^2
* TVI means Threshold vs Intensity function
* This version comes from Ward Larson Siggraph 1997
*/
float tvi(float adaptation_luminance)
{
// returns the threshold luminance given the adaptation luminance
// units are candelas per meter squared
float log_a, r, result;
log_a = log10f(adaptation_luminance);
if (log_a < -3.94f) {
r = -2.86f;
} else if (log_a < -1.44f) {
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
} else if (log_a < -0.0184f) {
r = log_a - 0.395f;
} else if (log_a < 1.9f) {
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
} else {
r = log_a - 1.255f;
}
result = powf(10.0f , r);
return result;
}
// computes the contrast sensitivity function (Barten SPIE 1989)
// given the cycles per degree (cpd) and luminance (lum)
float csf(float cpd, float lum)
{
float a, b, result;
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
return result;
}
/*
* Visual Masking Function
* from Daly 1993
*/
float mask(float contrast)
{
float a, b, result;
a = powf(392.498f * contrast, 0.7f);
b = powf(0.0153f * a, 4.0f);
result = powf(1.0f + b, 0.25f);
return result;
}
// convert Adobe RGB (1998) with reference white D65 to XYZ
void AdobeRGBToXYZ(float r, float g, float b, float &x, float &y, float &z)
{
// matrix is from http://www.brucelindbloom.com/
x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}
void XYZToLAB(float x, float y, float z, float &L, float &A, float &B)
{
static float xw = -1;
static float yw;
static float zw;
// reference white
if (xw < 0) {
AdobeRGBToXYZ(1, 1, 1, xw, yw, zw);
}
const float epsilon = 216.0f / 24389.0f;
const float kappa = 24389.0f / 27.0f;
float f[3];
float r[3];
r[0] = x / xw;
r[1] = y / yw;
r[2] = z / zw;
for (int i = 0; i < 3; i++) {
if (r[i] > epsilon) {
f[i] = powf(r[i], 1.0f / 3.0f);
} else {
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
}
}
L = 116.0f * f[1] - 16.0f;
A = 500.0f * (f[0] - f[1]);
B = 200.0f * (f[1] - f[2]);
}
bool Yee_Compare(CompareArgs &args)
{
if ((args.ImgA->Get_Width() != args.ImgB->Get_Width()) ||
(args.ImgA->Get_Height() != args.ImgB->Get_Height())) {
args.ErrorStr = "Image dimensions do not match\n";
return false;
}
unsigned int i, dim;
dim = args.ImgA->Get_Width() * args.ImgA->Get_Height();
bool identical = true;
for (i = 0; i < dim; i++) {
if (args.ImgA->Get(i) != args.ImgB->Get(i)) {
identical = false;
break;
}
}
if (identical) {
args.ErrorStr = "Unclamped images are binary identical\n";
return true;
}
// assuming colorspaces are in Adobe RGB (1998) convert to XYZ
float *aX = new float[dim];
float *aY = new float[dim];
float *aZ = new float[dim];
float *bX = new float[dim];
float *bY = new float[dim];
float *bZ = new float[dim];
float *aLum = new float[dim];
float *bLum = new float[dim];
float *aA = new float[dim];
float *bA = new float[dim];
float *aB = new float[dim];
float *bB = new float[dim];
if (args.Verbose) printf("Converting RGB to XYZ\n");
unsigned int x, y, w, h;
w = args.ImgA->Get_Width();
h = args.ImgA->Get_Height();
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
float r, g, b, l;
i = x + y * w;
// TODO: It might make sense to use values which are clamped to a displayable range
// (0.0-1.0) is some scenarios, but for now we ignore the fact that pixels above 1.0
// do not perceptually differ from those with value 1.0 and do the copmutations
// as if they were distinguishable.
r = powf(args.ImgA->Get_Red(i) , args.Gamma);
g = powf(args.ImgA->Get_Green(i), args.Gamma);
b = powf(args.ImgA->Get_Blue(i) , args.Gamma);
AdobeRGBToXYZ(r,g,b,aX[i],aY[i],aZ[i]);
XYZToLAB(aX[i], aY[i], aZ[i], l, aA[i], aB[i]);
r = powf(args.ImgB->Get_Red(i) , args.Gamma);
g = powf(args.ImgB->Get_Green(i), args.Gamma);
b = powf(args.ImgB->Get_Blue(i) , args.Gamma);
AdobeRGBToXYZ(r,g,b,bX[i],bY[i],bZ[i]);
XYZToLAB(bX[i], bY[i], bZ[i], l, bA[i], bB[i]);
aLum[i] = aY[i] * args.Luminance;
bLum[i] = bY[i] * args.Luminance;
}
}
if (args.Verbose) printf("Constructing Laplacian Pyramids\n");
LPyramid *la = new LPyramid(aLum, w, h);
LPyramid *lb = new LPyramid(bLum, w, h);
float num_one_degree_pixels = (float) (2 * tan( args.FieldOfView * 0.5 * M_PI / 180) * 180 / M_PI);
float pixels_per_degree = w / num_one_degree_pixels;
if (args.Verbose) printf("Performing test\n");
float num_pixels = 1;
unsigned int adaptation_level = 0;
for (i = 0; i < MAX_PYR_LEVELS; i++) {
adaptation_level = i;
if (num_pixels > num_one_degree_pixels) break;
num_pixels *= 2;
}
float cpd[MAX_PYR_LEVELS];
cpd[0] = 0.5f * pixels_per_degree;
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
float csf_max = csf(3.248f, 100.0f);
float F_freq[MAX_PYR_LEVELS - 2];
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
unsigned int pixels_failed = 0;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int index = x + y * w;
float contrast[MAX_PYR_LEVELS - 2];
float sum_contrast = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
float n1 = fabsf(la->Get_Value(x,y,i) - la->Get_Value(x,y,i + 1));
float n2 = fabsf(lb->Get_Value(x,y,i) - lb->Get_Value(x,y,i + 1));
float numerator = (n1 > n2) ? n1 : n2;
float d1 = fabsf(la->Get_Value(x,y,i+2));
float d2 = fabsf(lb->Get_Value(x,y,i+2));
float denominator = (d1 > d2) ? d1 : d2;
if (denominator < 1e-5f) denominator = 1e-5f;
contrast[i] = numerator / denominator;
sum_contrast += contrast[i];
}
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
float F_mask[MAX_PYR_LEVELS - 2];
float adapt = la->Get_Value(x,y,adaptation_level) + lb->Get_Value(x,y,adaptation_level);
adapt *= 0.5f;
if (adapt < 1e-5) adapt = 1e-5f;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
}
float factor = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
}
if (factor < 1) factor = 1;
if (factor > 10) factor = 10;
float delta = fabsf(la->Get_Value(x,y,0) - lb->Get_Value(x,y,0));
bool pass = true;
// pure luminance test
if (delta > factor * tvi(adapt)) {
pass = false;
} else if (!args.LuminanceOnly) {
// CIE delta E test with modifications
float color_scale = args.ColorFactor;
// ramp down the color test in scotopic regions
if (adapt < 10.0f) {
// Don't do color test at all.
color_scale = 0.0;
}
float da = aA[index] - bA[index];
float db = aB[index] - bB[index];
da = da * da;
db = db * db;
float delta_e = (da + db) * color_scale;
if (delta_e > factor) {
pass = false;
}
}
if (!pass) {
pixels_failed++;
if (args.ImgDiff) {
args.ImgDiff->Set(1.f, 0.f, 0.f, 1.f, index);
}
} else {
if (args.ImgDiff) {
args.ImgDiff->Set(0.f, 0.f, 0.f, 1.f, index);
}
}
}
}
if (aX) delete[] aX;
if (aY) delete[] aY;
if (aZ) delete[] aZ;
if (bX) delete[] bX;
if (bY) delete[] bY;
if (bZ) delete[] bZ;
if (aLum) delete[] aLum;
if (bLum) delete[] bLum;
if (la) delete la;
if (lb) delete lb;
if (aA) delete[] aA;
if (bA) delete[] bA;
if (aB) delete[] aB;
if (bB) delete[] bB;
char different[100];
sprintf(different, "%d pixels are different\n", pixels_failed);
// Always output image difference if requested.
if (args.ImgDiff) {
if (args.ImgDiff->WriteToFile(args.ImgDiff->Get_Name().c_str())) {
args.ErrorStr += "Wrote difference image to ";
args.ErrorStr += args.ImgDiff->Get_Name();
args.ErrorStr += "\n";
} else {
args.ErrorStr += "Could not write difference image to ";
args.ErrorStr += args.ImgDiff->Get_Name();
args.ErrorStr += "\n";
}
}
if (pixels_failed < args.ThresholdPixels) {
args.ErrorStr = "Images are perceptually indistinguishable\n";
args.ErrorStr += different;
return true;
}
args.ErrorStr = "Images are visibly different\n";
args.ErrorStr += different;
return false;
}