-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlossFuncsFactory.cpp
78 lines (65 loc) · 2.51 KB
/
lossFuncsFactory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <vector>
#include <cmath>
#include <functional>
#include <string>
#include <unordered_map>
#include <utility>
#include <stdexcept>
using LossFunction = std::function<double(const std::vector<double>&, const std::vector<int>&)>;
using LossDerivative = std::function<std::vector<double>(const std::vector<double>&, const std::vector<int>&)>;
using LossPair = std::pair<LossFunction, LossDerivative>;
vector<double> softmax(const vector<double>& inputs);
double cross_entropy(const vector<double>& outputs, const vector<int>& labels) {
const vector<double>& outputs_softmax = softmax(outputs);
double loss = 0.0;
for (size_t i = 0; i < outputs.size(); ++i) {
loss -= labels[i] * log(outputs_softmax[i]);
}
return loss;
}
vector<double> outputs_error(const vector<double>& outputs, const vector<int>& labels) {
vector<double> derivatives(outputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
derivatives[i] = outputs[i] - labels[i];
}
return derivatives;
}
/*
double sigmoid_loss(const vector<double>& outputs, const vector<int>& labels) {
double loss = 0.0;
for (size_t i = 0; i < outputs.size(); ++i) {
loss += -outputs[i] * (double)labels[i] + log(1 + exp(outputs[i]));
}
return loss;
}
*/
LossPair getLossFunctions(const string& name) {
static unordered_map<string, LossPair> loss_map = {
{"cross_entropy", {cross_entropy, outputs_error}},
};
auto it = loss_map.find(name);
if (it != loss_map.end()) {
return it->second;
} else {
throw invalid_argument("Unknown loss function: " + name);
}
}
// auto [lossFunc, lossDeriv] = getLossFunctions("cross_entropy");
// does not conform to factory
vector<double> softmax(const vector<double>& inputs) {
double max_input = *std::max_element(inputs.begin(), inputs.end());
vector<double> exp_values(inputs.size());
double sum_exp_values = 0.0;
// Compute e^(x - max(x)) for numerical stability
std::transform(inputs.begin(), inputs.end(), exp_values.begin(),
[&max_input](double input) {
return exp(input - max_input);
});
sum_exp_values = std::accumulate(exp_values.begin(), exp_values.end(), 0.0);
// Divide by the sum of all e^x to get probabilities
std::transform(exp_values.begin(), exp_values.end(), exp_values.begin(),
[&sum_exp_values](double value) {
return value / sum_exp_values;
});
return exp_values;
}