-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathevaluate.py
136 lines (94 loc) · 5.22 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import pore_utils #my library
from matplotlib import pyplot as plt
import keras
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
import scipy
from scipy import stats
import matplotlib.cm as cm
import keras.backend as K
import os
import pandas as pd
K.set_learning_phase(0)
model_name = 'PoreFlow_net'
dir_data = 'D:/SPLBM_output/finney' #location of the data
best_model = keras.models.load_model('savedModels/%s/%s.h5' % (model_name,model_name)) #load the best model
# #if the custom loss is utilized
#best_model = keras.models.load_model('savedModels/%s/%s.h5' % (model_name,model_name),
# custom_objects={'mean_absolute_percentage_error_custom':
# pore_utils.mean_absolute_percentage_error_custom})
input_size = 80
data_transform_pore = 'minMax_2'
data_transform_tof = 'minMax_2'
data_transform_vel = 'minMax_2'
data_transform_MIS = 'minMax_2'
data_transform_perm = 'minMax_2'
samples = [12]
for ii in range( 0, np.size(samples) ):
test_on = [samples[ii]]
print('-'*10)
print(f'Sample: {test_on}')
print('-'*10)
test_set = pore_utils.load_data(sets = test_on, path=dir_data, split=True,
input_size = input_size, overlap=0 )
e_test, _ = pore_utils.transform( test_set['e_pore'], data_transform_pore, model_name, fileName='e_stats', isTraining=False )
MIS_z_test, _ = pore_utils.transform( test_set['mis_z'], data_transform_MIS, model_name, fileName='mis_z_stats', isTraining=False )
MIS_f_test, _ = pore_utils.transform( test_set['mis_f'], data_transform_MIS, model_name, fileName='mis_f_stats', isTraining=False )
tof_L_test, _ = pore_utils.transform( test_set['tof_L'], data_transform_tof, model_name, fileName='tof_L_stats', isTraining=False )
tof_R_test, _ = pore_utils.transform( test_set['tof_R'], data_transform_tof, model_name, fileName='tof_R_stats', isTraining=False )
vel_t_true , _ = pore_utils.transform( test_set['vz'], data_transform_vel, model_name, fileName='Vz_trainStats', isTraining=False )
eZ_test , _ = pore_utils.transform( test_set['e_poreZ'], data_transform_vel, model_name, fileName='eZ_stats', isTraining=False )
X_test = np.concatenate( (
np.expand_dims(e_test, axis=4),
np.expand_dims(tof_L_test, axis=4),
np.expand_dims(tof_R_test, axis=4),
np.expand_dims(MIS_z_test, axis=4),
np.expand_dims(MIS_f_test, axis=4),
np.expand_dims(eZ_test, axis=4),
), axis=4)
del e_test, eZ_test, MIS_z_test, MIS_f_test, tof_L_test, tof_R_test
if X_test.ndim <= 4:
X_test = np.expand_dims( X_test , axis=0 )
x1=np.expand_dims( X_test[:,:,:,:,0], axis=4)
x2=np.expand_dims( X_test[:,:,:,:,1], axis=4)
x3=np.expand_dims( X_test[:,:,:,:,2], axis=4)
x4=np.expand_dims( X_test[:,:,:,:,3], axis=4)
x5=np.expand_dims( X_test[:,:,:,:,4], axis=4)
x6=np.expand_dims( X_test[:,:,:,:,5], axis=4)
vel_t_pred = np.float64( np.squeeze(best_model.predict( x=[x1,
x2,
x3,
x4,
#x5,
#x6,
],batch_size=5 )) )#make prediction in batches
########### Mean velocity calc
vel_t_pred_mean = vel_t_pred.mean()
vel_t_true_mean = vel_t_true.mean()
########### Perm error
kt_error = np.abs( (vel_t_true_mean-vel_t_pred_mean)/vel_t_true_mean )*100
print(f'The permeability error is {kt_error:0.4f} %')
vel_t_pred_full = pore_utils.unsplit_matrix( vel_t_pred )
vel_t_true_full = pore_utils.unsplit_matrix( vel_t_true )
"""
Plotting cross-sections
"""
slice_true = vel_t_true_full[:,:,250]
slice_pred = vel_t_pred_full[:,:,250]
fig, axs = plt.subplots(nrows=1, ncols=3,figsize=(20,4) )
im=axs[0].imshow(slice_true, cmap=plt.cm.hot)
axs[0].set_title('Flow simulation results')
fig.colorbar(im,ax=axs[0])
axs[0].axis('off')
max_v = slice_true.max()
min_v = slice_true.min()
im=axs[1].imshow(slice_pred, clim=(min_v,max_v), cmap=plt.cm.hot)
fig.colorbar(im,ax=axs[1])
axs[1].axis('off')
axs[1].set_title('PoreFlow-net predictions')
im=axs[2].imshow((np.abs((slice_true-slice_pred)/slice_true)*100),clim=(-10,50),
cmap=plt.cm.inferno)#,norm=LogNorm(1,100)
fig.colorbar(im,ax=axs[2])
axs[2].set_title('Relative error [%]')
axs[2].axis('off')